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The Personnel Occupied Woven Envelope Robot (POWER) concept has evolved over
the course of the study. Many potential applications were envisioned. See
Table I.

TABLE I

Potential Applications of POWER

1. Changing out and servicing payloads on the Power Tower payload platform.
2. Maintaining subsystems such as propulsion and attitude control.

3. Providing satellite and free flyer service.

4. Performing inspections.

5. Supporting the man tended option.

6. Performing remote control operations for hazardous duty.

7. Capturing satellites during final approach.

8. Docking for the orbiter, the orbital maneuvering vehicle and the orbital
transfer vehicle.

The original concept utilized the use of a flexible tunnel as a structural
element. See Figure 1 for the proposal concept of POWER. A careful analysis of
the advantages and disadvantages of this structural element led to a design with
much better structural integrity as shown in Figure 2. The stack of Stewart
tables makes a stable flexible mechanism. A complete description of the struc-
tural considerations were presented in the progress report dated June 1, 1986.
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Figure 1. Proposal Concept of POWER
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Figure 2. Human Occupied Space Teleoperator (HOST)

An analysis of the tunnel structure and operation showed that a system
option designed without the tunnel appeared to have certain advantages. One no
longer needed to provide micrometeriod protection for the tunnel. Air loss due
to tunnel permeability was avoided and energy used to provide tunnel motion was
no longer required. Such a system would have the pod dock directly with a mod-
ule or node port and an astronaut could pass from the Space Station directly to
the pod. The doors of the pod could remain open when the pod was docked so that
the Space Station environmental control and life support system (ECLSS) would
maintain the atmosphere in the pod. The pod would have its own ECLSS for normal
pod operations. This concept was explained in a progress report dated November
30, 1987. The system was subsequently unofficially renamed Host (Human Occupied
Space Teleoperator). See Figure 3.

Figure 3. HOST With No Tunnel



This combination of the stacked tables and the pod (HOST) could also be used
to build Space Station. HOST was sized to fit in the shuttle cargo bay.
Consequently, HOST could be carried into orbit and used to assemble pieces of
the truss which were transported to orbit earlier. The astronaut could transfer
from the orbiter to the pod through the orbiter airlock. He would then operate
HOST similar to a cherry picker used by power line repairmen on earth. See
Figure 4. He would, however, have the added advantage of the RMS grappler and
the robotic arms to assist him. The astronaut could disengage HOST from the
orbiter once a sufficient amount of the truss were assembled. This could be
accomplished by using the RMS grappler on the pod and the pod's arms as a tempo-
rary attachment to the truss until the base of the stacked tables were swung
over to a truss mount and attached. Then, the astronaut could use the truss as
a base of operations and use HOST to unload the orbiter payload bay on sub-
sequent trips. Re-entry of the astronaut to the orbiter could be accomplished
by moving the pod back to the orbiter. The astronaut could then leave the pod
and disengage the pod from the airlock. Thus, HOST would be available for use
on subsequent trips, and would remain in orbit.

Figure 4. HOST Deployed From Orbiter

Although the tunnel may not be necessary for operation of the pod, a combi-
nation of stacked Stewart tables and the tunnel would serve as a docking mecha-
nism (jet-way) for the shuttle at the Space Station. This could allow
misalignment between the Space Station and the shuttle to be accommodated by the
tables, while at the same time provide a pressurized passageway for the
astronauts. See Figure 5.



Figure 5. Orbiter Docking to Host Flexible Tunnel

Thus, crew transfer between the shuttle and the Space Station would be easily
accommodated.

A failure modes and effects analysis was presented in a progress report
dated June 1, 1987. Specific failure mode probability would need to be per-
formed during hardware design. Five major systems or elements were considered:
1) base airlock hatch, 2) personnel access tunnel, 3) segment base truss
structures, 4) segment actuator, and 5) control pod. The conclusion of the
analysis was that further study of the failure modes and effects was necessary
during specific hardware design, but that no insurmountable difficulties were
encountered.

An accommodations assessment showed that HOST could be designed to fit into
the payload bay, and that structural attachment at both ends and several places
in between would be required for transport. No unusual orbiter services or
accommodations would be required.

Accommodations on Space Station showed the primary interface would be the
pod attached to a station resource node once the Station was built. The base of
the extension truss could be mounted to the Station structure or to a rail that
the mobile servicer would use. Standard Space Station services would be used
except that 28 volt direct current might be used to drive the actuators; more
electrical trade-off studies need to be done. Particular attention needs to be
paid to the power consumption of the actuators and of the electronics. Both of
these elements were conservatively rated for the purpose of this study. Yet,
this study uncovered no major difficulties.

A considerable effort was expended on modeling and simulating HOST on a
Silicon Graphics Integrated Raster Imaging System (IRIS) work station. A
detailed description of the solid modeling work is given in Appendix A, one of
the computer generated solid model images is shown in Figure 6. This shows the
edge of the Space Station module, the micrometeoroid protection canister for the
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tunnel, the stack of Stewart tables, and the pod. A detailed derivation of the
equations used in the kinematic studies is given in Appendix B, one of the com-
puter generated images displayed on the IRIS work station is shown in Figure 7.
This shows the solid model of the Space Station with a stack of Stewart tables
attached. The stack motion is controlled by keyboard input and a computer
"mouse". The numbers on the screen give the position and orientation of the
pod, and the lengths of the actuators. A brief video tape of the work is

available.
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Figure 6. HOST Attached to Space Station

Figure 7. Computer Simulation of POWER



Several areas could use further definition. In particular: 1) a pod design
incorporating all requirements and Space Station constraints, 2) loads, dynamic
disturbances and further control schemes, 3) orbiter interfaces and initial
operations from the orbiter, 4) Space Station storage during early assembly, and
5) a high efficiency actuator design and other items mentioned in an earlier
progress report.

In summary, HOST provides many potential advantages as seen on Table II. We

recommend that a Phase A definition be completed under direction of a NASA Field
Center.

Table II
Advantages of HOST
e HOST System Provides Accessibility for Multiple Space Station Tasks
without EVA
e HOST Uses Low Risk Technology
e HOST System Saves Crew Time and Reduces Fatique
e POD to Node Attachment Offers Lower Complexity and Direct POD Acess

e Tunnel/Table Structure Alone Offers Attractive Concept for Orbiter Mating
with Station by means of Extendable "Jet-Way” from Station to Orbiter

e HOST System Offers Flexibility and Growth

Potential Use from Orbiter - Two Modes (POD/HOST or POD only w/RMS)
Use as Station Docking Port Extension for Orbiter

Fixed Attachment of HOST at Space Station

Moveable Attachment Location on Space Station (Rail Mount)
Evolution to Space Station Proximity Free Flyer

e System Complements or Substitutes for other EVA/Maneuverable Systenms
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Preface

The project described in this report has been done at the Center for Applied Op-
tics, University of Alabama in Huntsville (UAH), Huntsville, Alabama, U.S.A.,
in cooperation with the Johnson Research Center of the same university.

Some of the early results of this project have been published in a progress
report submitted to NASA [Wessling-87a].  An integral version of the re-
mainder of this report will be published in a final report about the flexible
robot arm POWER (Personnel Occupied Woven Envelope Robot) in Fall 1987
[Wessling-87b)].

The graphics software is developed on the “IRIS” (Integrated Raster Imaging
System) workstation of Silicon Graphics. The IRIS is a high performance work-
station and is state-of-the-art at this moment. It performs most of the graphical
manipulations in hardware. The heart of the IRIS is a custom VLSI-chip called
the “Geometry Engine”. The workstation has twelve Geometry Engines (four
for matrix multiplications, six for the clipping system, and two for scaling).
These Geometry Engines are controlled by the application/graphics processor
(the 32-bits Motorola 68020). The video framebuffer has 32 bitplanes and each
bitplane has a resolution of 1024 by 768 pixels. The geometry engines in com-
bination with the 32 bitplanes enable the user to do real time animation of a
wire model or hardware z-buffering for elimination of hidden surfaces.

I would like to thank Dr. Francis C. Wessling (Associate Director of the
“Consortium for Materials Development in Space” and Principle Investigator of
the POWER-project) for the fruitful cooperation. I would also like to thank
Dr. Amar Choudry (Senior Research Scientist-Center for Applied Optics) for
guiding my project and making my stay in the United States possible.

And finally, I would like to thank my Dutch friends in the United States: Paul
Janssen for his cooperation in this project (he developed the control algorithms
for POWER), Jeroen van der Zijp for his useful comments made on draft versions
of this text, and especially Emile Fiesler for his support. He was of great help
to me in matters of English language and mathematics.

Vincent Harrand
July 1987

Huntsville, Alabama, U.S.A.



Project Description

The goal of this project is the development of methods and algorithms for solid
modeling. The results of this will be used for a NASA-project, which is a
feasibility study of a flexible robot arm (POWER: Personnel Occupied Woven
Envelope Robot, Grant # NAGW-847 from the Office of Space Science and
Applications). This flexible robot arm is designed to be attached to the Space
Station. The NASA-project includes a graphical simulation of the flexible robot
arm. For this reason and for publicity purposes there is need for a graphical
model of the robot arm (including a simple model of the Space Station).

Although the goal of this project is practical, there will be an emphasis
on the theoretical aspects of solid modeling. Solid modeling is a very broad
subject. Basic concepts, needed for the graphical simulation, such as modeling
and viewing transformations, wire models, shaded polygon models, etc. are
assumed to be known by the reader. For more information see [Newman-81]},
[Rogers-76] and [Rogers-85]. The structure of the flexible robot arm is complex.
The representation of solids must not constrain the shape of it. Therefore the
major research goal is the mathematical description of free-form surfaces and
the rendering of these surfaces on the screen.



Abstract

The purpose of this project is solid modeling for the flexible robot arm POWER
(Personnel Occupied Woven Envelope Robot).

The first three chapters describe the solid modeling part. The first chapter
gives an introduction to solid modeling; what kind of representations of solids
do exist and what are their corresponding (dis)advantages. The second chapter
deals with the mathematical description of surfaces of solids. The author has
chosen the Bezier representation of surfaces. The actual surface is approximated
with a recursive subdivision algorithm. In order to perform the subdivision in
hardware the original algorithm of [Lane-80a] has been reformulated by the
author. The developed algorithm gives, with the standard built-in hardware of
the IRIS workstation, a reduction of computing time of more than 60%. Chapter
three describes the rendering of the mathematical model on the screen. The
shading is determined by a local illumination model. This model provides three
aspects of natural light, i.e. diffuse reflection, specular reflection, and ambient
light. The visual appearance of the model on the screen can be enhanced by
applying Gouraud shading. The intersection of surfaces and the removal of
hidden surfaces is solved by making use of the z-buffer algorithm.

And finally, chapter four gives an introduction about the flexible robot arm
and describes the application of the theory of the first three chapters for mod-
eling the flexible robot arm.



List of Mathematical Symbols Used in this Text

X = capital letter denotes matrix (contents can be derived from context)
I = identity matrix

X = matrix X with the order of the rows reversed

X-! = inverse of matrix X

Xt = transpose of matrix X

8,t,u,v = parametric variables '

P;, P;j = control point of curve or surface (vector consists of z, y, and z)

o = innerproduct of two vectors

[0,1] = closed interval, continuous values

(™ = combinations (m, n) =: #_'n, m>n m,n=01,...
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1 Representations of Solids

1.1 Introduction

This section is mainly based on [Requicha-80], [Requicha-81], [Requicha-83], and
[Eastman-84]. There exists a substantial amount of techniques for solid model-
ing, for example Constructive Solid Geometry (CSG), octree/voxels, triangula-
tions, Bezier/B-spline surfaces, and wire frames. The internal representation of
an abstract solid in a solid modeler is very important in relation to a specific
application. For example every method has constraints on surface complexity
and derivation of geometrical properties. None of the known representations
can be characterized as the best for every application.

Geometric algorithms do not manipulate physical solids; rather, they manip-
ulate data which represent solids. Suppose that flat-faced solid polyhedra have
to be represented and that an edge-based approach is taken. For each edge its
begin and end point are stored. It is clear that the edges are represented unam-
biguously, but that is not what has to be represented. Therefore the following
questions are important [Requicha-81):

e Do edges supply enough information about a solid polyhedron to make it
possible to compute the appearance, volume and other geometrical prop-
erties of the polyhedron?

e Does an arbitrary collection of edges represent a solid polyhedron? If not,
how can one be assured that geometric algorithms operate on valid data.

e How does one determine if two ostensibly different representations corre-
spond to the same solid?

o Can some geometric properties be computed from one representation, but
not (or better) from another?

e Which representation is the best?

A general framework for classification of representations is needed for answering
these questions. This will be discussed in section 1.2. With this framework it is
possible to show the most important characteristics of each representation. In
section 1.3 an overview is given of some important representations with their
characteristics.

1.2 Mathematical properties of répresentations of solids

First of all, the properties of an abstract solid have to be defined:

e Rigidity: an abstract solid must have an invariant configuration or shape
which is independent of the solid’s location or orientation.
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e Description of volume: a solid must have an interior, and a solid’s bound-
ary can not have isolated or dangling portions.

o Closure under rigid motions and certain Boolean operations: rigid motions
(translations and/or rotations) or operations that add or remove material
(welding, machining) must, when applied to solids, produce other solids.

e Finite describability: there must be some finite aspect of solids (e.g. a
finite number of faces) to ensure that they are representable in computers.

A representation scheme is a relation between abstract solids and representa-
tions. The modeling space M consists of all the abstract solids. The collection
of all syntactically correct representations is called a representation space R.
The representation scheme s is defined as the relation s : M — R.

e Domain: the domain D of a representation scheme characterizes the de-
scriptive power of the scheme, the domain is the set of entities repre-
sentable in the scheme. In most cases the domain of the representation
scheme will not equal the modeling space M.

e Range: The range V of a representation scheme is the set of representa-
tions which are valid. To ensure the representational validity we either
have to check this after construction of the database, or representation
schemes are needed in which all the representations are valid. Normally
the range of the representation scheme is a subset of the representation
space R.

e Completeness: A representation is unambiguous or complete if it corre-
sponds to a single object in the domain. A representation scheme s is
unambiguous or complete if all of its valid representations are unambigu-

ous (if the inverse relation s~! is a function).

e Uniqueness: a representation r is unique if its corresponding object does
not admit other representations in the scheme (if s(s~!) = r). A repre-
sentation scheme is unique if all of its valid representations are unique (if
s is a function).

The foregoing definitions may informally be summarized as follows. A represen-
tation is invalid if it does not correspond to any solid. A valid representation is
ambiguous if it corresponds to several solids. A solid has nonunique represen-
tations if it can be represented in several ways by the scheme.

Representation schemes which are both unambiguous and unique are highly
desirable because they are one-to-one mappings. This implies that distinct
representations in such schemes correspond to distinct objects, and therefore
object equality can be determined. Equality assessment in schemes which are
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unambiguous but not unique requires more elaborate techniques. For example,
two sets of points may be tested for equality by determining whether their
symmetric difference is the null set.

Most representation schemes for geometric entities are nonunique for at least
two reasons:

e substructures in a representation may be permuted, and

e distinct representations may correspond to differently positioned but con-
gruent copies of a single geometric entity.

In addition to these formal properties it is possible to define some informal
properties. These informal properties are important for practical usage, but
can not be formalized in a useful way.

e Conciseness: the amount of data that has to be stored for a particular
solid must be as low as possible.

o Ease of creation: the ease with which representations may be created by
users of modeling systems, especially if the users are human, must be as
low as possible.

1.3 Evaluation of different solid modeling techniques

In this section some important representation schemes are discussed. For each
scheme the characteristics and the typical applications are given.

Finite-point-sets If a computer representation of a physical solid has to be
made, an usual approach consists of measuring a large number of points
lying on the boundary of the object. This representation is ambiguous.

Voxels The voxel (volume element) method is essentially a spatial occupancy
enumeration scheme. A solid consists of all small cubes that lie in a fixed
spatial grid. Spatial arrays are unambiguous and unique (except for posi-
tional uniqueness), but they are quite verbose. A typical application is the
representation of organic structures. The data is acquired by making cross-
sections of a structure (computer tomography). Each cross-section defines
one layer of cubes of the voxel-representation. The voxel representation is
one of the methods for constructing an unambiguous representation from
an ambiguous finite-set-of-points representation.

Constructive Solid Geometry (CSG) CSG uses combinations of solid prim-
itives. These primitives can be combined via certain operations, such as
a motion (translation/rotation) and/or a Boolean operation. The primi-
tives are simple solids, for example a cube, sphere, cylinder, and a pyramid.
CSG schemes are unambiguous, but not unique. The domain of the CSG
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scheme depends on the used primitives and operations. All the represen-
tations made with this scheme are valid, concise and easy to create. A
typical application of this scheme is the representation of (unsculptured)
mechanical parts.

Boundary representation A solid is represented by segmenting its boundary
into a finite number of faces, and each face is represented by (for exam-
ple) its bounding edges and vertices. Faces should satisfy the following
conditions:

e A face of an object is a subset of the object’s boundary.
e The union of all the faces of an object equals the object’s boundary.

e A face must have an area and must not have dangling edges or iso-
lated points.

Planar faces may be represented by their bounding edges, but nonplanar
faces have to be represented in a different way. Nonplanar surfaces can
be represented by either Bezier or B-spline techniques. In order to get
an unambiguous boundary representation scheme, the faces have to be
represented unambiguously. The domain of the boundary representation
is at least as rich as those of CSG-schemes. [Requicha-80] gives some
examples of topological and metric conditions for checking the validity
of a boundary representation. Boundary representations are quit verbose
and sometimes difficult for humans to construct.

The different representation schemes with their corresponding (dis)advantages
gives rise to hybrid solid modelers. These solid modelers use combinations
of schemes and combine the power of two schemes. Bidirectional conversion
between most of the schemes is not possible. And if the conversions are possible,
then they are only known by a very small group of researchers [Requicha-83).

The author has chosen the boundary representation because of the “unlim-
ited” domain of this representation. The domain mainly depends on the chosen
representation for sculptured surfaces. In this case the Bezier representation
has been chosen for description of surfaces. Some general disadvantages of the
scheme (representations are difficult to create and rather verbose) are not im-
portant in this project. The Space Station and the flexible robot arm are only -
defined once by the programmer.

The definition of the planar faces (including the surface normal) is very
straightforward and can be found in [Rogers-85]. The same illumination model
as for Bezier surfaces can be used for planar surfaces. This illumination model
is described in chapter 3.2. In the next chapter the Bezier representation of
surfaces will be discussed.



11

2 Surface Description and Generation

2.1 Introduction

The representation of the surface of various kinds of solids requires some special
mathematical methods, because the classical mathematics does not provide ade-
quate methods for conveniently creating surfaces that will satisfy certain design
criteria. In this section a brief survey of mathematical constructions used for
defining a curve or a surface is given.

For a plane curve, the explicit nonparametric equation takes the general
form:

y=f(=)

In this form, there is only one y value for each x value. This explicit form can
not represent closed or multiple-valued curves. This limitation can be overcome
by using an implicit equation of the general form:

fz,y)=0

Both explicit and implicit nonparametric equations are axis dependent. And
moreover, geometric modeling requires surfaces that are bounded in some sense
which can not be represented by a nonparametric function at all. This is one
of the most important reasons for using parametric equations. When using a
parametric representation, a space curve is given by a set of three functions
z = z(t), y = y(t), and z = 2(t) of a parameter ¢. A surface is represented by
z = z(u,v), y = y(u,v), and z = z(u,v). Normally the parametric variables are
bounded on the interval [0,1]. This restriction gives rise to curve and surface
boundaries. In practice, the parametric representation is still not suitable for
geometric modeling, because each shape has its own equations and therefore
needs its own computer programs. It is very convenient to have one general
form for describing an arbitrary curve or a surface. Such general forms exist
and one of them is the Bezier form.

2.2 Bezier surfaces

There exists a lot of good reference material about Bezier curves and surfaces,
for example [Rogers-76] and [Mortenson-85].

The Bezier curves and surfaces are named after P. Bezier. He worked at the
French automobile company of Renault, where he developed the Unisurf system
for designing sculptured surfaces of automobile bodies.

Bezier started with the principle that any point on a curve segment must be
given by a parametric function of the following form:

B =3 Piilt) telo, ] M)

=0

PRECEDING PAGE BLANK NOT FILMED
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where the vectors P; represent m + 1 vertices of a polygon. These vertices
are called control points. The blending function f;(t) determines the effects or
contributions of the control points to the resulting curve. This means that the
control points only determine the shape of the curve and that the control points,
except for the begin and end points, lie not on the curve itself. Bezier wanted
to establish certain properties and was looking for specific blending functions to
meet these requirements. Some of these properties are:

1} The functions must interpolate the first and last control points; that is,
the curve segment must start at Py and end at Pp,.

2) The tangent at Py must be given by P; — Py, and the tangent at P, by
Py, — Pp—1. This gives direct control of the tangent to the curve at each
end. This is important for combining two or more curves.

3) The functions f;(t) must be symmetric with respect to ¢ and (1 —¢). This
means that the sequence of the vertex points can be reversed without
changing the shape.

Some more general properties of Bezier curves are [Newman-81]:

4) The parametric formulation of the Bezier curve allows it to represent mul-
tiple valued curves.

5) A Bezier curve is independent from the chosen coordinate system used to
measure the control points.

6) Bezier curves are variation diminishing. This means that the curves are
very smooth and that there are no oscillations or other irregularities.

Bezier chose a family of functions called Bernstein polynomials to satisfy these
conditions:

Imi(t) = (77 )1 =y @

So equation 1 becomes:

B =Y Pmit) te(o,1] 3)

i=0

For most of the applications a cubic curve is used, i.e. there are four control
points and m = 3. Figure 1 depicts the blending function curves for m = 3. The
first control point Py, whose contribution to the curve’s shape is determined by



2 SURFACE DESCRIPTION AND GENERATION 13

Jio|\ JAEK

contribution |

-

AN\ S
FTIX X TN

Jaal /1 1/ P '\ { s
[ A A7 S N

0 - 1

Figure 1: blending functions

Jm,0(t) is the most influential when ¢ = 0. The other control points do not
contribute to B(t) for t = 0, since their associated blending functions are zero.
A symmetrical situation occurs for Ps when t = 1. Control points P; and P»
are most influential when ¢t = % and t = %—, respectively. So there is a shift in
the influence of each control point as the parametric variable ¢ moves through
its range from 0 to 1 (this is called blending).

When joining two Bezier curves, the first (and second) derivatives at begin
and end points have to be evaluated. They are (for m = 3):

B(t) = (1= t)3Py + 3t(1 = t)2P, + 3t3(1 — )P + t3P;
B'(t) = =3(1 — )% Py + (9% — 12t + 3) P, + (=9t + 6t) P, + 3t2P,

B'(0) = 3(P, - Po)
B'(1) = 3(P; - Py)

B"(t) = (=6t + 6) Py + (18 — 12)P; + (~18¢ + 6) P, + 6tPs

B"(O) = 6(P0 - 2P + Pz)
B"(l) = 6(P3 -2P, + P1)

This illustrates that the first derivative of the Bezier curve at the begin and
end points depends only on the nearest two control points. And the second
derivative depends on the nearest three control points. Continuity requirements
between adjacent Bezier curves can therefore be easily met.

This model can be extended for defining surfaces. This can be done by
taking the cartesian product of the basis function (Bernstein) with respect to
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Figure 2: Bezier surface with mesh of 16 control points

the two orthogonal directions. This results in the following equation:

14

B(u,v) = i (T‘)u‘u — y)m=i (Xﬂ: (?)vj(l - v)"_j) Py (4)

i=0 7=0

Equation 4 can be simplified to:

B(u,v) = Z Z Im,i(w)Jn i (v) Pyj

i=0j=0

(5)

With (u,v) € [0,1] x [0, 1], m and n are the degrees of the polynomial with
respect to the u and v directions, and the P;; are the control points. Figure 2
depicts a mesh of 16 control points (m,n = 3) with the corresponding Bezier

surface.
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2.3 Approximation of the surface with recursive subdivi-
sion

This section describes the approximation of the Bezier surface, by means of
a recursive subdivision of the convex hull formed by the control points. An
introduction to this subject is given by [Lane-80b]. A more detailed description
can be found in {Lane-80a].

If the Bezier representation of a surface is known, it can be displayed on a
screen with curves of constant parameter. See figure 2. This is very straight-
forward and gives no special problems. In order to display the surface with
shading techniques, in each point the normal vector of the surface has to be
known. The calculation of the surface normal is computationally very expensive
[Mortenson-85]. Therefore, the surface normal will not be calculated directly,
but by means of an approximation of the surface. The approximation of the sur-
face will be acquired by a recursive subdivision of the surface, i.e. the polynomial
over the parametric range [0, 1] is replaced by a combination of two polynomials,
one over [0, 1], the other over [,1]. Each of them is reparametrized so that it
is defined over [0,1]. As the process of subdivision continues, the polyhedron
formed by the control points approaches the actual surface. In rendering, the
subdivision process is carried out until the convex hull of the control points is
planar with linear edges. The calculation of the surface normals then becomes
very easy and is described in section 2.5.

2.3.1 Proof of the subdivision method

A short outline of the mathematical proof of the subdivision algorithm in [Lane-
80a], with some additional remarks, is given here.

The following properties of the Bernstein polynomials will be important in
the formulation of the subdivision algorithm.

Lemma 2.1 (Convez Hull Property) The Bernstein basis function is nonnega-
tive on [0,1] and sums identically 1o 1, i.e.

> amit) =3 ( i)t'(l _ymi=g (6)

where Jp, i(t) > 0,Vt € [0,1], wherei € (0,1,...,m) and m is a positive inieger.
Proof: The basis function is nonnegative on [0,1]. The binomial ezpansion

theorem is: N
3 (’:) a6 = (a4 b)"

=0
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This in combination with equation 6 gives:

m

> (T)fa-omi=@r1-gn=

1=0

In fact the Bernstein basts function is @ weighted average of the control points
(blending). And this average will always fall within the convez hull of the control
points.

o

Lemma 2.2 Jp i(t) = J;mm—-i(1 — 1)
Proof:

Tmi(t) = (':')t"(l — )y = (m"i i)t-(l i

Jm,;(t) = (mn: i) (1 - t)m-itm—(m—i) - Jm,m—i(l —_ t)

The Bernstein basis function is symmetrical on the interval [0,1)] with respect to
t and (1 —t). This means for ezample that the sequence of control points can be
reversed without changing the shape of the curve.

0

Theorem 2.1 (Subdivision theorem) :

Let Bu[P : 0,1] = By[Po,Py,...,Pm : 0,1} be defined as the Bernstein
polynomial of degree m to the polygon P on interval [0,1]. Polygon P consists of
the control points Py, ..., Py. The original curve over the parametric range [0, 1]
is replaced by two curves over the parametric range [0, 1] and [L, 1] respectively.
Then the curves are reparametrized so that both get defined over the parametric
range [0,1].

Then the reparametrized first half is defined by:

B[P :0,1) = Bn[P},..., Py :0,3] N
and the second half by:

Bm[P:0,1) = Bu[PR, PR, ..., P 1 1,1 (8)
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Figure 3: subdivision of a cubic Bernstein-based polynomial [Lane-80a)

where (see figure 3):

Pk_{ (P +PY/2 &
={ :

nn

l,...,m
, ; ©
The first equality (7) can be proven by induction on m (see [Lane-80a]). The
second equality (8) can then be proven by lemma 2.2, because the symmetric

relationship must hold.

a

If this splitting construction is applied to each of the polygons [PJ, P},..., Pi)
and [Pm, Pm-1 . PY), four polygons are generated, which, when concate-
nated, form a polygon 12, of 4m + 1 vertices. Defining y¥,[P] as the polygon
derived after k iterations of this algorithm (¢, would have 2¥m 4+ 1 vertices),
it has to be proven that:

Jim 47 [P] = B[P :0,1] (10)

Theorem 2.2 (Convergence)

Let B[P : 0,1} be the vector-valued Bernstein approzimation of degree m
to the polygon P = [P, ..., Py], and define the polygon ¥ [P] as above. Then
equation 10 must hold.

The proof of this algorithm can be found in [Lane-80a]. The proof is based on
lemma 2.1. The polyhedron formed by the convez hulls of all the subcurves will
get closer and closer to the actual curve, because the area of each conver hull
is getting smaller and each subcurve must lie within the corresponding conver
hull. So the whole subdivision process converges to the aclual Bezier curve.
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2.3.2 The subdivision algorithm

Based on theorem 2.1 an algorithm for subdivision can be derived. Given the
polynomial coefficients P = [Py, Py,..., Ps] in terms of the Bernstein basis on
[0,1] compute the subcurves Q@ = [Qo, @1,...,Q@n] and R=[Ro, Ry,..., Ra).

Procedure Curvesplit (P, Q, R,n)

step 1: [initialize]
Q—P
Ry, — Qn
step 2: [compute coefficients]
forj=1ton
begin
QTMP2 — Q;_,
fork=jton
begin
QTMP1 — QTMP2
QTMP2 — Qi1 + Q4)/2
Qr-1 — QTMP1
end
Qn — QTMP2
Rn-; — QTMP2
end
return

A similar algorithm exists for surface subdivision. The surface B(u, v) is subdi-
vided in two steps, namely:

1) Subdivision of the surface in the u direction, which results in two subsur-
faces.

2) Subdivision of these two subsurfaces in the v direction, which results in a
total of four subsurfaces. :

The surface subdivision algorithm Surf Split(P, @, R, S, T, m,n) can be found
in Appendix B. '

In fact these algorithms do only one subdivision. A good approximation of
the surface can be obtained by a recursive subdivision, in the following way:
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Procedure Surface_Generation (P, m,n)
if ‘planarity of P’ < Tolerance then

Draw._on_Screen(P)

else

begin
Surf Split(P,Q, R, S,T,m,n)
Surface_Generation(Q, m, n)
Surface_Generation(R, m, n)
Surface_Generation(S, m, n)
Surface_Generation(T, m, n)
end

return

Notes on the algorithm:

(2)

(b)

(c)

(d)

recursion depth

The recursive subdivision of the surface is a logarithmic process. After
k iterations there are 4F subsurfaces. The screen has approximately 1M
pixels. If the surface is subdivided until pixel-size, the maximum recursion
depth is 10. This limits the number of iterations and hence the amount
of dynamic data-storage that is required.

cracks

If the subpatches are relatively big, it is possible that there are some
cracks (small empty areas between adjoining patches) in the total surface,
because the subpatches are not completely planar, nor are their edges
straight. In [Tamminen-85] a “Surface Integrity Filter” is described. This
filter is based on quadtrees. This filter can be avoided by requiring that
the planarity of P is within a tolerance of less than 1 pixel.

planarity estimation of surface P

If the planarity of surface P is within a certain tolerance (for example
1 pixel) then the subdivision is ready and the patch P can be displayed
on the screen. [Lane-80a] and [Mudur-86] describe some algorithms for
planarity estimations. These estimations are based on an approximation
of the planarity of the convex hull rather than on the surface itself (see
lemma 2.1). These estimations involve a lot of computation. In practice
the area of a patch will be chosen very small (towards one or a small
number of pixels). This is important for the visual appearance of the
surface on the screen (smoothness and no cracks). Therefore (in this
implementation) not the planarity but the area of the patch is estimated.
And an estimation of the area is very simple to acquire.

The procedure Draw_on_Screen(P) is a formalization of the theory dis-
cussed in chapter 3 “The Rendering of the Mathematical Model”.
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2.3.3 Reformulation of the subdivision algorithm

Each patch can have hundreds (or even thousands) of subpatches. Every reduc-
tion in computation time of the subdivision algorithm is therefore important.
The Bezier algorithm can be described as a series of matrix multiplications.
A matrix multiplication can be done in (dedicated) hardware. If the matrix-
approach can be extended for the subdivision algorithm, there will be a tremen-
dous reduction of computation time, because implementation in hardware is
much faster then in software. In this project, the hardware of the IRIS work-
station can be used (the IRIS hardware performs a 4 by 4 matrix multiplication
intended for viewing transformations, etc.; this facility is user-accessible).

Derivation of the matrix formulation of Bezier curves:

B(t) = iJm,i(t)Pg (11)
=0
where
Imatt) = (7 )t - 1 (12)

for m = 3 equation 12 becomes:

Jso=(1-tP=-t3+32 -3t +1
Ja1 =3t(1 —1)% = 3t3 - 6¢2 + 3¢
J3,2 = 3t2(1 - t) = =33 + 3¢2

Jaz =13

The Bezier curve in matrix notation:

-1 3 -3 1 Py
‘ 3 -6 30 P

Bp=(£ ¢ t 1)| o "5 40 P; (13)
1 0 00 P;

If the three matrices on the right-hand side of equation 13 are represented
by respectively T, J, and P, then:
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B(t)=TJP (14)

Subdivision is a technique for deriving the set of four control points P/
defining a curve B(u) such that B(u) = B(t), where the u-range is the first half
of the ¢-range, i.e.:

(1) B(u) is the first half of the original curve B(t), and
(2) the relation between the u-values and the t-values is: ¢t = fu.

The curve B(u) is defined as:

Buy=(v «* u 1)JP=UJP (15)

In order to find P’, the equations 14 and 15 are written as a function of one
parameter. The first half can be described (with parameter u) as:

B(u)=UJP' = ( (3u)® (3u)? 3u 1)JP

The matrix ( (3u)® (3u)? Ju 1) can be rewritten as:

1 g0 o0

1,3 1,2 1 3 2 0 00
(5w 3u? Ju 1)=(v « u 1) 1 =US

00 L0

0 0 0 1

Bu)=UJP' =USJP=>
P'=J-iSJP

The first three matrices on the right-hand side of the equal sign can be
precalculated (this will be represented by S’) and subsequently used to do a
curve subdivision at the cost of a single matrix multiplication. The calculation
of §’ can be found in Appendix C.

S’ and P’ can be calculated as follows:

S'=J"1sJ
P =5pP
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The matrix S’ is only suitable for the first half of the curve. In order to get
the second half of the curve B(t) (i.e. the control points P"), it is possible to:

a) reverse the order of the rows! of P and S’ (this can be done because of
lemma 2.2), or

b) redefine the matrix S’ (this will result in the matrix S”).

The last option is computationally the best, therefore S” has to be derived.
a) and b) can be more formally described as:

a) PII = SI‘P*

b) P"=S"P

S/IP=SItP#
Lemma 2.3 P* = I[*P - I'=mbym, P=mbyn

The order of the rows of P can be inverted by multiplying I* with P.
The general definition of a matriz multiplication is:

c;,:Z;,,p,,,- i=1,....m j=1,...,n (16)
h=1

=0 iff i+h#m+1

h=1 ff i+h=m+l=>h=m+1-i

FEquation 16 can now be simplified to:

¢ij = Pn41-ij = P°

With lemma 2.3 P* can be replaced by I* P, so:

S"P=S"I"P =
S" = 8§™*I*

The calculation of S” can be found in Appendix C.

Inotation: X* means that the order of the rows of matrix X has been inverted, thus

X'.‘J. 1= Xm—i41,5, where X has m rows.
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With these two matrices (S’ and S”) it is possible to divide the curve in
two separate curves. For surface subdivision this model has to be extended.
The subdivision of a Bezier surface patch results in 4 subpatches. This can
be done by subdividing each column and subsequently subdividing each row.
The column subdivision results in two subpatches. Each of these subpatches is
divided in another direction (row-subdivision), which results in 4 subpatches.
S’ and S” can be used for the column subdivision. For the row subdivision two
other matrices have to be defined.

There are two methods for doing the row subdivision, namely:

a) transpose the matrix P, and use S’ to obtain the first subpatch, or
b) define a new matrix 5.

This can be more formally described in the following way:
a) P"=g5'pt

b) P" = PS"™ (note the reversion of the matrix order)

a) and b) combined:

S/Pt = (PS/H)t o
S/Pt - SIIItPt =
Sl = S/m Y Sm = Slt

The calculation of §” can be found in Appendix C.

The second subpatch for row subdivision can be obtained by either:
a) reverse the columns of S and P, or

b) define a new matrix 5"

Lemma 2.4 The order of the columns of a square matriz A (n by n) can be
reversed by multiplying with I*. The proof is analogue to the proof of lemma 2.3

(]

a) and b) can be more formally described with lemma 2.4:
a) PI/II = PI# SIIIIU
b) PIIII - PSII/I
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PSIIII - PI'SIHI‘ =
SIHI - ItSIHIt

With lemma 2.3 the equation for S”” can be simplified to:
SIIII - SIIItI‘.
The calculation of S can be found in Appendix C.
There are four matrices derived for subdivision of surfaces. The new algorithm
for subdivision of surface P is as follows:

P = P;j is the original surface. @ = Q;j, R= R;j, S = Sij, and T = T35 are
the four resulting subsurfaces (with ¢, = 1,...,4).

Procedure Surfsplit (P,Q, R, S,T)

begin
[split P in u direction]
U=SP
B=8§"P
[split U in v direction]
Q=US"
S — USIIII
[split B in v direction]
R - BSIII
T - BSI//I

end

FEvaluation

The new algorithm is very elegant compared to the solution of [Lane-80a]
(see appendix A). Both algorithms were implemented for comparing their perfor-
mances. The new algorithm gives more than 60% reduction in computing time.
The IRIS workstation provides only a software driven 32 bits (hardware) matrix
multiplier. However, if special hardware could be used, a further reduction in
computing time would be realized.

In [Pulleyblank-87] the feasibility of a VLSI-chip for ray-tracing bicubic
patches is studied. One part of the design is the subdivision of the surface.
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Figure 4: mesh of control points for “the teapot”

They use a hardware version of Lane’s algorithm. The new matrix algorithm
would give an improvement for two reasons:

e it requires less hardware than a direct implementation of Lane’s algorithm,
and moreover

o the matrix multiplier can also be used for the viewing and modeling trans-
formations (projections, translations, and rotations).

The subdivision algorithm, based on matrix multiplications, is a major step
towards a ’real time solid modeler’. ( At this moment, real time solid modeling
is an important research goal for companies like Silicon Graphics [Robertson-87:
Pushing the Limits of 3D technology].)

2.4 Composite surfaces & special cases

In practice one can not model complex objects with only one Bezier surface
patch. In order to accomplish complex surfaces, it is necessary to join several
surface patches to form a composite surface. It is important that the composite
surface has no discontinuities (C°-continuity) and that the first derivative of the
surface has no discontinuities either (C!-continuity). These conditions can be
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Figure 5: surface of “the teapot” with curves of constant parameter

easily met by controlling the position of the control points. In order to achieve
CP®-continuity the boundary curves (of the shared boundary) must coincide.
The four corner control points lie on the patch. The other (8) boundary
points control the slope of the boundary curves (the vector from a corner point
to the nearest boundary point is called a tangent vector). The four inner control
points define the cross slope along the boundary curves (the so-called twist vec-

tors). In order to get C'-continuity the corresponding vectors of both surfaces
must be collinear.

Figure 4 shows the mesh of control points of “the teapot”. See for more
information about “the teapot” [Crow-87]. “The teapot” consists of 28 Bezier
surface patches. Figure 5 depicts the surface of “the teapot” with curves of
constant parameter. The shaded model of “the teapot” is shown in figure 11.

An other way of combining surfaces is sweeping a surface along a certain
curve. Figure 6 and 8 show two examples. Each segment of the tube consists of
two Bezier surface patches (front & backside). The definition of the sweeping
curve is done by rotating a certain angle around one of more axis. Later on,
this model can be extended for sweeping of surfaces along an arbitrary Bezier
curve.

Normally a Bezier surface patch has a more or less rectangular grid of control
points. In some cases it is necessary to deviate from this principle. For example,
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Figure 6: sweeping of surfaces along a curve

for modeling a sphere it is convenient to make use of triangular patches. The
upper part of a sphere can be modeled by combining four triangular surface
patches. The four coincident vertices form the ‘pole’ and the four opposite sides
the ‘equator’ of the sphere. A triangular surface can be formed by combining
the four control points of one side of the patch. This is called a degenerate
surface. Other types of degenerate surfaces are possible, but most of them are
of little practical value.

2.5 Determination of surface normals

The purpose of the subdivision algorithm is to approximate the surface and
to determinate the surface normals, necessary for the rendering (in particular
shading) of the mathematical model on the screen (see chapter 3).

In general the surface normals have to meet certain requirements, namely:

e the normal is outwards (out of the surface) directed,
e the normal has to be normalized, and
e (for Gouraud shading) there has to be a normal in each control point.

If the convex hull formed by the control points of the patch is planar, within a
given tolerance, the patch may be treated as linear.
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The determination of the surface normals can be done in three ways (with
increasing exactness and complexity), namely:

(1)

(2)

The convex hull is considered to be a planar four sided polygon. In this
case the surface normal can be calculated by taking the cross product of
two sides (the sides considered to be a vector). So the whole patch has
one surface normal, and hence one shade.

The patch is described by a mesh of 16 control points. In fact, the convex
hull is a polyhedron and consists of 9 subpatches (see figure 2). These
subpatches are considered to be planar. With two edges of each subpatch,
the surface normal of the entire subpatch can be calculated by taking
the cross product. Therefore, the subpatch gets one shade and the whole
patch get nine shades.

Each control point has one, two or four coincident subpatches for a cor-
ner, an edge or an inner control point respectively. The normal in each
control point can be calculated by taking the average over all the surface
normals of the coincident subpatches. With this normal the shade of that
point can be calculated (see section 3.2). The shades of the other surface
points will be calculated by linear interpolation of the shades at the con-
trol points. (see Gouraud shading, section 3.3). This approach will give
the best results, because each point on the surface gets its own shade.
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3 Rendering of the Mathematical Model

3.1 Introduction

If the mathematical model of an object is known, including the surface normals
at certain points on its surface, the object can be displayed on the screen. The
first step is the determination of the shade at each point of the surface where
the surface normals are known. In this case a local illumination model (with
highlighting) is used.

The second (optional) step is a linear interpolation of these shades (at certain
points on the surface) throughout the whole surface. This is known as Gouraud
shading. If Gouraud shading is not used, the whole (sub)patch gets one shade
(see section 2.5).

The last step is the removal of (parts of) surfaces, which are not visible from
the point of view (hidden surface elimination). In addition to surfaces, which
are not visible, some surfaces intersect with each other. Both problems can be
solved with the z-buffer algorithm.

3.2 Illumination model and Shading

A lot of articles are written about shading and illumination models. Some ref-
erences are [Amanatides-87], [Lorig-86] and [Rogers-85]. An illumination model
involves physical and psychological aspects, neither of these aspects will be dis-
cussed here.

When a light ray falls on a surface, it can be absorbed or reflected. The
amount of reflected light from the surface of an object depends on the direction
(and type) of the light source, the surface orientation and the surface properties
of the object. This means that the shading calculations are only based on local
properties, i.e. the overall setting of the surface in the total scene is ignored
(local illumination model).

Mumination models usually consist of a number of components, each com-
ponent designed to simulate some aspect of light. The used illumination model
consists of three components, namely ambient light, diffuse reflection and spec-
ular reflection.

Ambient light

Ambient light is a light source, which illuminates all points of the object
equally. This light source represents the light that is scattered back from the
surroundings (walls). The reflected light is radiated uniformly in all directions.
The intensity I can be obtained by:

I= Iaka (17)
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where:

I, = ambient light intensity

ks = ambient reflection coefficient

In practice Ik, is just a constant ( the objects in figure 9 have Ik, = 0.4).

Diffuse reflection

The diffuse reflection term represents light which is emitted from a specific
light source. This light strikes the surface and is then uniformly reflected in
all directions, therefore the position of the viewer is unimportant. The amount
of light which is diffusely reflected depends on the angle between the direction
of the point light source and the surface normal. Objects rendered with only
diffuse lighting appear as if made of a dull smooth plastic (see figure 8). It is
possible that there are more light sources in the scene and all these contributions
can be added up. So, the intensity I is:

# of lights
I= 3 I(kaLioN)) (18)
i=1
where:

L; = normalized i-th light vector
N = normalized surface normal
I;; = light intensity of the i-th light source
ks = diffuse reflection coefficient

The objects of figure 9 have ‘# of lights’ = 1, I;, = 0.7, and k4 = 0.6
1

Specular reflection

The specular part of the model is particularly good for highlights on glossy
surfaces. The amount of incident light which is specularly reflected depends on
the angle between the reflected light (the angle of reflection is equal to the angle
of incidence) and the eye vector (see figure 7). The intensity I can be calculated
by:

# of lights
I= Y Ijk(RioE)) (19)

i=1

where:
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surface normal NV
{} reflected ray R

) 0——& 0 )
light vector L

eye vector £

Figure 7: specular reflection

ks = specular reflection coefficient
R = normalized reflection vector (of light vector)
EF = normalized eye vector (position of viewer)

(The objects of figure 9 have k, = 0.6)

The power n denotes how reflective the surface is. By increasing value of
n, the highlights become smaller and more sharply defined. A value of infin-
ity means that the surface is a perfect mirror (i.e. light is reflected only in
the direction for which angles of incidence and reflection are equal). Figure 8
demonstrates the impact of this parameter.

The reflected light vector R can be calculated with the following formula
(see [Lorig-86]):
R=2(LoN)N-L

Given the surface normal (N), point of view vector (E), and the position(s)
of the light source(s) (L;), the light intensity can be calculated by combining
formulas 17, 18, and 19. This results in:

# of lights
I=TIks+ Z Ili(kd(Li o N) + ks(Ri o E)") (20)

=1

Some notes:

e If one of the contributions to the light intensity is less then zero, the
particular contribution is discarded (made equal to zero).
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Figure 8: example of a glossy and a matte surface

e The formula results in an intensity value between 0.4 and 1.24 (with the
chosen parameter values).

o The objects (figure 9) have 128 shades of one particular color (“0 = dark”
and “128 = light” shade of that color). So the intensity value I is a direct
mapping to the color lookup-table? (with an offset for each color). For
example the color lookup-table looks like this (see figure 9):

128 — 255 — shades of red

256 — 383 — shades of gray
384 — 511 — shades of green
512 — 639 — shades of blue

640 — 767 — shades of yellow
768 — 895 — shades of magenta
896 — 1023 — shades of cyan

The IRIS workstation can handle up to 32 colors (each with 128 shades)
simultaneously with the hardware z-buffering.

2The contents of the video memory is only a pointer to a table (color lookup-table). This
table contains the actual colors. This has two reasons: (a) reduction of video memory and
(b) efficient manipulation with colors.
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Figure 9: shaded model of wine glasses

e The color of the light source determines the color of the specular compo-
nent. In this model a light source with white light is assumed. Therefore
in the shade range of 80 to 128 (contribution of specular reflection), an
increasing white component is added.

3.3 Gouraud shading

If the illumination model is applied to a subdivided Bezier surface using one
surface normal for the whole subpatch, a surface with small facets results. A
smoother appearance can be obtained using a technique developed by Gouraud
[Gouraud-79]. Figure 10 shows two surfaces, one with and the other without
Gouraud shading (“The Doughnut Data” by courtesy of [Blinn-87]).

The algorithm is simple. The polygon and the surface normal at each of its
vertices are known (see section 2.5). With the surface normal one can calculate
the shade in each vertex of the polygon (see section 3.2). The shades of the
pixels inside the polygon can be found by linear interpolation of the shades at
the vertices. The shades for the points along the edges of the polygon are deter-
mined by interpolating linearly between the shades at the vertices. The shades
for all of the interior points of the polygon are determined by interpolating lin-
early between the pairs of edge points that lie along each scan line. The IRIS
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Figure 10: torus with and without Gouraud shading

workstation provides this algorithm in hardware.
The Gouraud shading can be kept local (within one patch) because the
subdivision process results in smooth transitions between patches.

3.4 Hidden surface elimination & intersection of surfaces

The purpose of the hidden surface elimination is the removal of (parts of) sur-
faces that are not visible from the point of view. In case of intersecting surfaces
(with possibly more intersection lines) only the visible parts must be displayed.

Originally a number of authors used scan line algorithms in order to per-
form the elimination of hidden surfaces for parametrically defined surfaces (see
[Lane-80b]). A scan line algorithm consists of two nested loops. One for the
Y-coordinate going down the screen and one for the X-coordinate going across
each scan line of the current Y. Basically the scan line algorithm is as follows:

for each scan line y:
for each pixel z on a scan line:
for each surface intersecting that scan line at z:
calculate z-value
determine the visible surface at z,y (lowest z-value)
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Figure 11: shaded model of “the teapot”

and display it.

For this implementation there has been chosen for a z-buffer hidden surface
elimination algorithm. The scan line algorithms are rather time-consuming and
besides that, the IRIS workstation provides a z-buffer algorithm in hardware.

The z-buffer algorithm has a number of advantages in relation to other
hidden surface elimination algorithms. For example:

e the algorithm is simple,

e it can handle hidden surface elimination and complex surface intersections
(scenes can be of any complexity),

e the increase of computing time with an increasing complexity of the scene
1s linear, and

e no sorting is necessary for determination which point has the lowest z-
value.

The z-buffer algorithm needs two buffers. The video buffer is used to store the
intensity of each pixel. The z-buffer is a separate buffer used to store the z-value
or depth of every visible pixel. The depth or z-value of a new pixel to be written
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to the video buffer is compared to the depth of that pixel stored in the z-buffer.
If comparison indicates that the new pixel is in front of the pixel stored in the
video buffer, then the new pixel is written to the video buffer and the z-buffer
is updated with the new value. Otherwise, the new pixel and the corresponding
z-value are discarded. The result of this algorithm is that only the visible pixels
(surfaces) are displayed.

An example is shown in figure 11. It contains hidden surfaces and surfaces
that are intersecting with each other (handle and sprout with the teapot itself,
see figure 5). An example of a complex scene with z-buffering is shown in
figure 6.
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4 'The Flexible Robot Arm POWER

4.1 Introduction

The Personal Occupied Woven Envelope Robot (POWER) project is a joint
effort of the University of Alabama in Huntsville (UAH) and Wyle Laborato-
ries [Wessling-86a] [Wessling-86b] [Wessling-87a]. This work is being performed
under the Innovative Research Program for NASA.

POWER is a flexible robot arm. It will be used as an “extension” of the
Space Station. POWER consists of 50 segments, and each segment has six de-
grees of freedom. The segments are based on the Stewart Table [Stewart-65],
which has six linear (individually controlled) actuators. A control pod is at-
tached to the top of the flexible robot arm. A flexible tunnel connects the
control pod to the habitat module of the Space Station, allowing a person to
transfer from the Space Station to the pod without having to suit up for ex-
tra vehicular activity. The operator of the pod is able to move himself and
the pod to almost any location within 50 meters of the base attachment to the
Space Station. The operator has at his disposal remote manipulator arms and
also a glove box type arrangement with space suit arms so that he can perform
manipulations on equipment external to the pod.

Some of the applications of POWER are [Wessling-86b]:

e Changing out and servicing payloads on the payload platform.

e Maintaining subsystems such as propulsion and attitude control.

Providing satellite service.

Performing inspections.

Supporting shuttle cargo bay operations.

Performing remote control operations for hazardous duty.

¢ Capturing satellites during final approach.

The robot arm is still under development. For graphical simulation and publicity
purposes there was need for a graphical model of the flexible robot arm.
4.2 The graphical model of the flexible robot arm

The graphical model of the flexible robot arm consists basically of three ele-
ments, namely:

(1) the wire-model: Major parts of the Space Station are built up with the
line-primitive (polygons). ‘
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(2) the polygonal model: The triangular segments of the robot arm are shaded
polygons.

(8) the piecewise Bezier surface: The flexible robot arm itself and some parts
of the Space Station (habitat module) are modeled by piecewise cubic
Bezier surfaces.

In fact, these three elements belong to the boundary representation scheme
discussed in chapter 1. Each part of the boundary representation scheme has
its own advantages and typical applications. For example: (1) the Space Station
itself is a wire model, (2) the triangular elements of the robot arm are flat-faced
polyhedra, and (3) the remaining objects are free-form solids.

Only the Bezier representation of surfaces are covered in this report. The
other techniques and some basic graphical concepts such as modeling and view-
ing transformations are assumed to be known by the reader and can be found
in textbooks like [Newman-81), [Rogers-76] and [Rogers-85].

By modeling the Space Station as a wire frame, it is possible to do real time
animation with the Space Station. When the animation stops, the shaded parts
(habitat module and robot arm) are drawn with the hidden surfaces removed.
This separation is necessary because of the limited capabilities of the IRIS work-
station. There are only 32 bitplanes available. For real time animation two 16
bit-buffers are used (one for displaying and one for drawing, and vice versa).
When the animation stops, one 16 bit-buffer becomes free and can be used for
z-buffering. And besides the limited buffer space, the drawing of the shaded
parts will take too long for real time animation.

Figure 12 depicts two segments of the flexible robot arm. One segment
consists of two triangular plates connected by six individually controlled linear
actuators (Stewart table).

Figure 13 and 14 show a close-up of a flexible robot arm with a few segments.
One can see a part of the yellow habitat module (part of Space Station), the
flexible robot arm and (on top of the robot arm) the control pod. A person can
sit inside the control pod and look through the spherical window on top of the
pod. Figure 14 shows the flexible transfer tunnel (red) for going from the Space
Station to the control pod. For normal operation the flexible tunnel is retracted
and fits in the yellow protection canister, placed at the first two segments of the
robot arm.

Figure 15 and 16 display the total view of the flexible robot arm connected
to the Space Station. The habitat module is located at the center of the Space
Station.
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Figure 12: two segments of the flexible robot arm
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Figure 13: close-up of the flexible robot arm
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Figure 14: close-up of the flexible robot arm with the transfer tunnel
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Figure 15: Space Station plus flexible robot arm (front view)
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Figure 16: Space Station plus flexible robot arm (side view)
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Conclusion

The purpose of this project was solid modeling for simulating the flexible robot
arm POWER. In order to accomplish this goal, a general solid modeling software
package for the IRIS workstation has been developed. The results are shown in
figure 12, 13, 14, 15, and 16.

The Bezier formulation has been chosen for the representation of surfaces.
This appears to be sufficient for modeling the robot arm and the Space Station.

If small patches are used, the surface is closely approximated by the recursive
subdivision algorithm, and hence difficult time-consuming planarity estimations
and integrity filters are not necessary. An important result of this research is
the reformulation of the recursive subdivision algorithm of {Lane-80a]. The new
algorithm is very elegant and gives a tremendous reduction of computing time,
especially for hardware implementations.

The illumination model performs adequately for this purpose. The Gouraud
shading gave the expected enhancement of the visual appearance of the surface
on the screen.
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A The developed software package

The developed solid modeling package forms a layer on top of the software of
the IRIS workstation. The IRIS workstation has no standard solid modeling
primitives. The new software package enables the user (programmer) to display
shaded polygon models and Bezier surfaces (with shading) on the screen. The
software package is very general. Data, supplied by other authors ([Crow-87)
and [Blinn-87]), can be displayed on the screen without any problem.

In addition to the solid modeling package a number of application programs
are written. First of all, programs are written for generating the Space Station
and the flexible robot arm. Furthermore there are some demonstration programs
written for illustrating the possibilities of the solid modeling package.

In the remainder of this section a list with the most important programs and
procedures are given. The programming language is C.

Solid modeling package

CalcNorm This procedure calculates the normals of a shaded polygon model.
In this case one segment of the flexible robot arm.

Crossp This procedure determines the cross product of two vectors. The
resulting vector is normalized.

DefMatrix This procedure defines a 4 * 4 matrix, which performs a certain
translation and rotation.

DrawPatch This procedure draws the convex hull of a Bezier surface patch
on the screen. Each face of the convex hull has one shade.

DrawSeg This procedure draws a shaded polygon model on the screen. In
this case one segment of the flexible robot arm.

FindIntens This procedure calculates the light intensity out of the normal,
light, and eye vector.

Gensurf This procedure generates the surface of a patch by calling procedure
Split and recursively calling procedure Gensurf for each subpatch.

Gouraud This procedure draws a convex hull of a Bezier surface patch on
the screen, with Gouraud shading applied.

Load This program reads a file from disk and displays it on the screen.
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LoadMap This procedure loads the lookup table with shades of some prede-
fined colors.

PolyTrans This procedure multiplies coordinates with the matrix defined by
procedure DefMatrix.

Save This program stores the picture on the screen into a file on disk.
Size This procedure determines the size of a patch.

Split This procedure does the splitting of the surface into 4 subpatches.

Application programs

Robot This program generates a close-up of the flexible robot arm.

Station This program generates the Space Station and the flexible robot arm,
and displays them on the screen.

Demonstration programs

Glasses This program displays the six wine glasses on the screen.

Patchnet This program displays a Bezier surface patch with curves of con-
stant parameter and the corresponding mesh of control points.

Sweep This program generates a picture of a solid swept along a curve.

Teapot This program displays the wire and solid model of the teapot on the
screen.

Testsurf This program displays the surface of Program Patchnet with shad-
ing.

Torus This program displays the torus with and without Gouraud shading.

Tube This program displays two tubes on the screen. One with and the other
without highlighting.
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B The correct subdivision algorithm

In [Lane-80a} an algorithm for subdivision of surfaces is given. The described
algorithm has typos and missing statements. In this appendix the correct algo-
rithm is described.

Given the polynomial coefficients P = P;;,i=0,1,...,m; j=0,1,...,nin
terms of a Bernstein basis on [0,1] x [0,1]. Compute the subpatches @ = Q;;,
R= R,'j, S= S,'j, and TET.'J'.

Procedure Surf Split ( P,Q, R, S, T, m,n)
step 1: [initialize] Set @ — P

step 2: [split in u direction]
fork=0ton
begin
Rk — Qmk
forp=1tom
begin
QTMP2 — Qp_1,k
forg=ptom
begin
QTMP1 — QTMP2
QTMP2 — (Qq-1,k + Qq,x)/2
Q-1 —QTMP1
end
Qmir — QTMP2
R‘m—p,k - QTMP2

end
end
step 3: [split Q in v direction]
fork=0tom
begin
Sk,n — Qk.n
forp=1ton
begin
QTMP2 — Qi p-1
forg=pton
begin

QTMP1 — QTMP2

QTMP2 — (Qi,g-1+ Qr,q)/2
Qi -1 — QTMP1
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end
Qin — QTMP2
Skpn-p — QTMP2
end
end
step 4: [split R in v direction)]
fork=0tom
begin
Ten — Rin
forp=1ton
begin
RTMP2 — Rgp_1
forg=pton
begin
RTMPl — RTMP2
RTMP2 & (Rgq-1+ Qr,q)/2
Ry g-1 — RTMP1
end
Rin — RTMP2
Tin—p — RTMP2
end
end
return
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C Calculation of subdivision matrices

The calculation of the matrices S’, $”, S, and S"”. See paragraph 2.3.3.

-1 3 -3 1
3 -6 30
T=1 -3 3 0 0
1 0 00
0 0 0 1
a0 0 131
0 1/3 2/3 1
1 1 1 1
1/8 0 0 0
s_| 0 14 0 0
=1 0o o 12 0
0 0 0 1
1 0 0 0
, rier_ |12 172 0 0
S=I78T=1 14 12 172 o
1/8 3/8 3/8 1/8
1/8 3/8 3/8 1/8
S" =S = 0 1/4 1/2 1/4

0 0 1/2 1/2
0 0 0 1

1 1/2 1/4 1/8

" _ Qn 0 1/2 1/2 3/8
S"=5"10 0 1/a 38
0 0 0 1/8
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C CALCULATION OF SUBDIVISION MATRICES

/8 0 0
3/8 1/4 0
3/8 1/2 1/2
1/8 1/4 1/2

SIIII — Slllt Ilt —

-0 o o
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1. INTRODUCTION

Working in space enviromment can be very stressful and time consuming.
Approximately 75 percent of an astronaut's time spent on extra vehicular
activities (EVA) is wasted by suiting uyw and undressing. Because the
astronaut is wearing a space suit, simple muscle contractions, for example of
the hand, take considerably more force and energy. The concept of the
Persanmnel Occupied Woven Envelope Robot (POWER) was developed for reaching
any location around the Space Station without performing EVA (figure pl).
POWER is also known by the name of Flexible Arm Robot (FAR) and Human
Occupied Space Teleoperator (HOST).

The Flexible Arm Robot is a tube-shaped robot, built ocut of several
stacked, individually controllable segments (figure p2). The bottam segment
is attached to the Habitat Module of the Space Station. The top segment is
camnected to a control pod, in which a human operator will cammand FAR,
enabling the operator to move himself and the control pod to a desired
location around the Station. The pod's control mechanisms and large
transparent window make it unnecessary for the operator to rely on television
screens to see his motions or to perform his work. Each segment has six
degrees of freedom and is based on the 'Stewart Table'. This model was
introduced by D. Stewart in 1965 [Stewart65] and has been used successfully
for flight similator platforms.

Connected to the pod are two three-link remote manipulator arms, and a
glove box type arrangement with space suit arms, for the more detailed work
outside the pod. An external toolbox allows the operator to change manipu-
lators on the remcte arms without having to return to the Habitat Module.

When FAR is in retracted position, a transfer tunnel through the
segments comnects the Habitat Module to the control pod. The astronaut can
climb through this tunnel from the Habitat Module to the pod, eliminating the
necessity of wearing a space suit. The access tunnel has undergone some
modification since the original concept was presented. It was originally
thought that the tunnel might serve as a structural caomponent. However, the
possible penetration by micro-meteoroids and subsequent loss of pressure
changing its rigidity caused a reevaluation of its function. The tunnel now
serves solely as an access waytothepod, ard will be retracted when FAR is
in operation.

Structural analyses demonstrated that the chosen design of the Flexible
Arm Robot has only sufficient strength for the operation of a four segment
prototype in a one gravity envirorment [Wessling86]. New control-algorithms to
handle this system of large degrees of freedam are needed. Therefore, a
camputer simulation of the whole Flexible Arm Robot, containing up to fifty
segments, is desired. For this purpose, akinematicnndelbasedonthe
physical features should be developed. Chapter 2 describes the physical model.
Chapter 3 presents the graphical design for the simulation studies. In chapter
4 the kinematic equations are specified, for implementation in the motion al-
gorithms presented in chapter 5.
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2. PHYSICAL DESIGN

FAR consists of n stacked segments, each based on the Stewart table. A
segment consists of two plates, six linear actuators and twelve Jjoints
(figure p4). A plate is a triangular shaped hexahedron with a length of
92.464 cm (36.403 in.), a width of 6.2548 cm (2.4625 in.) and a height of
7.620 cm (3.000 in.). An actuator is a extendable and retractable 1link
between the two plates. In retracted position, the actuator is 50.541 cn
(19.898 in.) long. A fully extended actuator is 81.021 cm (31.898 in.) long
(figure pS). A joint is a two—axis connection between a plate and an actuator
and is located at each vertex of each plate. The upper (maneuverable) plate
ard the lower (base) plate are rotated 180 degrees in respect to each cther.
The maneuverable plate of a particular segment forms the base of the next
segment, while its own base is the maneuverable plate of the previous segment

(figure p3).

2.1. Actuators

The actuators could be hydraulic, electric, or pneumatic. Hydraulic
actuators require bulky high pressure hoses and well lubricated pistons.
Seals tend to be a problem. Leakage of hydraulic oil was deemed a real
possibility unless precautions were taken to protect the hoses from micro-
meteoroid impact. This would add to the bulk of the system, consequently, a
hydraulic based system was discarded. Pneumatic systems require supply and
return hoses too. in addition, pneumatic systems can leak, and reguire more
power than electrical or hydraulic systems. Thus, an electrically based
system was chosen. Wires can be smaller than hoses, cause no loss of
hydraulic fluid or air, and can be fused for safety. Threading wire around
the structure or exoskeleton should cause no large difficulty. Electric motor
driven actuators are used successfully on the Remote Manipulator System. These
were specially designed for space use. That technology may be directly usable
in this application.

2.2. Joints

A typical Stewart table is usually shown with ball-joints at each side
of the actuator. However, ball-joints have same disadvantages in this
application. Ball-joints on both ends of the actuator do not allow very much
torque to be applied by electrical motors driving the screw of the actuator.
Torque can only be applied if it is less than the torque that causes the ball
joint to slip in its mounting. Ball joints-also allow uncontrolled rotation of
the two ends of the actuator. Thus, ball joints were rejected. Instead, a
double clevis cormector was designed. This connector allows angular motion of
each of the actuators but restricts the rotation of the ends of the actuator
with respect to the vertices of the Stewart table. Consequently, free motion
is attainable without the danger of the wires wrapping around the actuators.
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2.3. Transfer Tunnel

The transfer tunnel started as a contimuous tunnel spanning from the
Habitat Module to the control pod. Moving the tunnel requires work unless the
motion is accamplished under constant volume canditions or unless the tunnel
is evacuated. An airlock is planned at both ends of the tunnel to isolate both
the Habitat Module and the control pod from the tumnel. Thus, evacuation of
the air from the tunnel is possible and would remove the campression power
requirements. Since the air locks are on both ends of the tunnel, it can be
retracted when FAR is in operation, which reduces the likelihood of puncture
by micro-meteorcids. A mechanism is required to extend and retract the tunnel.
One successful application of a flexible tunnel in space is the access tunnel
used between the Orbiter and Spacelab., Other applications, including a one
person expandable airlock, have been suggested by Goodyear Aerospace
Corporation.

One might question whether an access tunnel is necessary, or whether
access to the pod can be possible without it. Let us assume that the boom or
exoskeletonofFARhasaneJ¢erdedrangeoff1ftynetersardanexpansmn
ratio of five to one. Thus, its retracted length would be ten meters. This
requires an access tunnel of ten meters. A fixed tunnel projecting ten meters
fram the Habitat Module, would require ten meters of exoskeleton dead length
to accamodate it. An expandable, retractable tunnel with a five to one
expansion ratio would require only two meters of dead length in the
exoskeleton and need only two meter storage length for the access tunnel, and
would be campletely ocut of the way for motion of the Flexible Arm Robot.

The above considerations assume FAR's bottom segment is attached to the
Habitat Module of the Space Station. If the base were to be connected to scame
other part of the Space Station, it might be possible to couple the airlocks
of the Habitat Module and the control pod directly. The astronaut could then
climb from the Habitat Module to the control pod, eliminating the necessity of
a transfer tunnel.



Flexible Arm Rabot July 26, 1988 page 4
2.4. Control Pod

An envirommental control and life support system (E.C.L.S.S.) for the
cantrol pod could be self contained or attached to the Habitat Module. Being
self cantained does not mean it has to be self perpetuating. Consumables could
be replenished from the module. Thus, a system similar to that used in the
space suit appears to be a likely candidate for an ECLISS for the control pod.
It appears to be small encugh for an astronaut to carry it through the access
tumel to and from the pod, yet large enough to allow approximately eight
hours of cperation in the pod for each backpack that the astronaut carried to
the pod. Johnson Space Center is developing a regenerative backpack that would
free the astronaut from transporting one. Other aspects of a total ECISS would
include passive measures in the pod such as good insulation, proper materials,
sun shielding in the viewing port, and so forth. Attaching an ECISS directly
to the Habitat Module does not appear to be practical for several reasons.

An ECISS dependent directly on the ECISS of the Habitat Module would
require a reevaluation and possible redesign of the ECISS for the module
because of the additional loads imposed by the pod. This does not appear to
be desirable. In addition, comnecting supply lines between the control pod
and the module exposes the module to loss of pressure caused by the rupture
of the supply lines to the pod. Check valves could be installed to prevent
large losses. Other considerations, as well, dictate that an independent life
support system be used. Running the supply lines along a moving structure
increases the possibility of accidental cut. The lines also require an extra
micro-meteoroid protection. Having the ECLSS independent of the module appears
to be the best way to avoid many of the potential problems, particularly when
one recognizes that an independent ECISS has already been developed for the
space suit [Wessling86].
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3. GRAPHICAL DESIGN

The main abjective of the Flexible Arm Robot simulation is verification
of the kinematic model, presented in chapter 4. It is desirable to see an
1nteract1vely controlled similation on. a graphical display representing the
dynamic scenes, rather than examining an endless stream of nmumbers. Thus, a
graphical model is required. A wire frame will suffice and will take
relatively little time to draw, which is imperative for real-time motion.

3.1. Plates

A plate is defined by the coordinates of its six vertices. Six lines
connect these vertices to form a regular hexahedron, representing the plate.
Origin O of the x,y,z-axes is in the center of the plate. Constant value r is
the distance between origin O and each vertex. Constant value beta is the
angle between the line from O to a vertex of the plate and the line from O to
the adjacent vertex of the imaginary triangle (figure gl). Since only length,
width and height of a plate are known, beta and r must be computed.

3b/ (L+2W) = sqrt{ 3]/ 2
b = (L+2W) *sqrt( 3]/ 6
r? = b® + (I/2)°

L+ 2w2/12 + 31%/12
(L2 + 4w + 4 + 312 ) / 12
= (L2+W+i) /3

beta = arcsin( W/ 2r )

Algorithm 3.1 is used to ccmptrte the coordinates of the six vertices.
The x-axis is assumed through the middle of vertices 1 and 2. The y-axis
points upward, parallel to the line connecting vertices 4 and 5.

(1) FR i=0 TO 5 DO
(2) sign = ((1&1) <<1) -1
(3) angle = (iDIVv2) *PI *2/3 + beta * sign
(4) Bi-):l = r * Q0S( argle )
(5) BZ 1 = r * SIN( angle )
‘ Z
(6) Bin - 0
(7) ENDDO
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The loop body between lines (1) and (7) is executed six times. Each loop
iteration the x,y,z—coordinates of vertex i+l of segment u (Bj) is camputed.
Figure gl shows the imaginary equilateral triangle through the six vertices.
The first two loop iterations are based on the angle between x-axis and the
line from origin O to the triangle vertex near the plate vertices 1 and 2.
This angle is equal to zero. The first loop iteration subtracts beta degrees
fram this angle, causing the line to cross vertex 1. The secord i tion adds
beta degrees to this angle, causing the line to cross vertex 2. &3 degrees
are added to the line for iterations three and four. It now runs from origin O
to the triangle vertex near plate vertices 3 and 4. Again, beta degrees
subtracted causes the line to cross vertex 3, beta added crosses vertex 4. The
last two iterations behave similarly. Obviously, beta degrees are subtracted
for odd and added for even vertices.

Line (2) determines the sign (add or subtract). Vertices 1 and 2
correspord to i=0 and i=1 respectively. The (i & 1) is a bitwise 'ard'
operation, yielding 0 for odd, 1 for even vertices. The (x << 1) is a left-
shift of 1 bit, equivalent to a multiplication by 2, yielding 0 or 2.
Finally, the intermediate result is decreased by one, yielding -1 or 1. Thus,
the value of variable 'sign' will be -1 for odd arnd +1 for even vertices.

Line (3) determines the angle of the line from origin O through one of
the vertices of the triangle. The angle (or line) must be equal for vertex 1
ard 2, for vertex 3 and 4, and for vertex 5 and 6. The operation 'div' refers
to integer division, so that '3 div 2' gives 1. The expression (i div 2)
yields 0 for vertices 1 and 2 (i=0 and i=l), yields 1 for vertices 3 ard 4,
and 2 fo:vertices 5 and 6. Consequently, variable ‘angle' will be 0, 1 or 2
times 3egre&s (PI*3/2 radial). Finally, the desired angle between x-axis
and the line from origin O to vertex i+l is obtained by adding sign times beta
(+beta or -beta).

Lines (4), (5) and (6) campute the X,y,z-coordinates respectively. Bj
represents the coordinates of vertex i (figure g3). Since the origin of the
coordinate-axes is assumed in the center of the plate, with the z-axis
pointing upward, the z—coordinates are zero.

3.2. Segments

An important cbservation is that both maneuverable and base plates are
identical graphical abjects. Therefore, the maneuverable plate can be derived
from the base plate. This can be done by rotating it 180 degrees around the z-
axis. Now the DOF variables can be used to give the plate its final position
(figure g2). Because of the 180 degree z-rotation, vertex 1 of the
maneuverable plate is derived fram vertex 4 of the base plate, vertex 2 from
vertex 5, etc. In general, vertex i of the maneuverable plate is derived from
vertex [(i+2) mod 6] + 1 of the base plate. The maneuverable plate could also
be derived by applying a 30 degree z-rotation. In fact, only the cambination

z-rotation with vertex-mapping is important.
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3.3. Flexible Arm

The particular configuration of FAR depends on the configuration of each
of the n segments. The configuration of a segment depends on the values of the
six degrees of freedom, the DOF variables (figure g2). For each segment u
(l<u<n), the DOF variables define the position and orientation of the
maneuverable plate, relative to the center of its base. The DOF variables are
dencted by the six tuple D,;. Elements 1,2,3 correspords to the x,y,z-
translation, elements 4,5,6 to the x,y,z-rotation respectively. B;j are the
coordinates of vertex i of the base plate (figure g3). The coordinates B are
constant and defined in section 3.1. The coordinates ofthenaneuverable
plate's vertex i is called My, i (figure g4). The lengths of segment u's
actuators are denoted by the six tuple A, (figure g5). Element Au (1<j<6)
correﬁpoxﬁstothelengﬂiofactlmtorl, wh1ch:.sconnectedtovert:ex1ofﬂ1e
base and vertex i of the maneuverable plate.

The following algorithm is used to draw the Flexible Arm Robot, based on
the values of the DOF variables.

(1) FORu=l1 TO n DO

(2) DrawPlate( B, , B, , By , B, , B, , By )
(3) T, = TransMatrix( Dy,17 Du,27 Du,3 Py,4¢ Dy 5v Dy 6t 180 )
(4) FOR i=1 TO 6 DO

Q M= By T

(6) ENDDO

(7) FOR i=1 TO 6 DO

(8 LY | B; = My, 1+(i+2)%6 |

(9) DrawActuator ( %,i )

(10) ENDDO

(11) MoveXYZaxes ( Tu )

(12) ENDDO

(13) DrawPlate( B, , B, , B; , B, , By , By )
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Algorittm 3.3. The mumber of plates to be drawn in a n segment Flexible
Robot Arm is equal to n+l. Since all plates are identical graphical cbjects,
only ane function (DrawPlate) is needed to draw a plate, based an the values
of Bj (1<i<6). Important is the orientation and position of the X¥Z-axes,
relative to which the plates are drawn. The index u is used wherever the
variable deperds on the current segment.

The main loop is fram line (1) to line (12). Segment u is the current
segment to be drawn. For the first iteration (u=1), the coordinate axes are
assumed to be at the correct position on the Habitat Module of the Space
Station. For the next iterations (u=2..n) the coordinate axes will be in the
center of segment u's base plate, which is the maneuverable plate of segment
u-1 (see line 11).

Line (2) draws the base plate of segment u. Segment u's maneuverable
plate will not be drawn. This is done during the next loop iteration when
segment utl's base plate is drawn.

Line (3) defines the transformation matrix Ty,. T,; is a 4x4 matrix,
dependent on the DOF variables D,; of segment u. Its deflmtlon will be
described in detail in section 4.2. The z-rotation D, g is incremented with

'180 degrees, and the corresponding mapping (line 8) will be used.

Line (4), (5) and (6) campute the vertices of the maneuverable plate of
segment u, using the coordinates of the base plate and transformation matrix
Ty Line (5) cannot be integrated in the loop from (7) to (10), for the vertex
mapping described in section 3.1 requires that all vertices first be camputed.

Line (8) ccmp.ttesthelength of actuatorAui, which is the distance
between vertex i of the base and vertex i of the maneuverable plate. The
mapping is used in combination with the 180 degree z-rotation in line (3).
Line (9) draws the actual actuator. The loop fram (7) to (10) makes sure that
six actuators are drawn per segment.

Line (11) repositions the coordinate axes (see figure g2, maneuverable
plate) using the transformation matrix T, which is based on D;.

The algorithm can be seen as successive drawings of base plates. Since
segment M+l does not exist, its base plate - and segment n's maneuverable
plate - will not be drawn. Line (13) draws this additional plate.

The actuators are the only parts of the configuration with a changeable
length. Consequently, their lengths must be checked during motion to prevent
them from exceeding their minimm or maximum values. An other constraint
involves the angle between actuator and plate. If this angle gets too small,
the forces on the joint could cause it to collapse. Manual control during
similation could maneuver a segment in such a position that one or more
actuators breakdown. This situation is visualized by changing the color of
the(se) actuator(s) on the camputer screen, while halting motion and restoring
the last legal configuration.
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4. KINEMATICS

4.1. Control Strategies

Since the Flexible Arm Rcbot consists of n segments, 6n degrees of
freedom must be controlled. Three control strategies have been considered to
date: the tip-biased, the base-biased and the equal-biased methods.

In the tip-biased strategy, more preference is given to move those
segments that are closest to the control pod. The main advantage of this
scheme is that less mass must be moved at any given time, thereby minimizing
the power consumption. The main disadvantage of this scheme involves the
dynamics. Consider an almost fully extended configquration, describing a curve.
Cchanging the length of an actuator of the base segment by a tenth of an inch,
could cause the control pod to move several feet.

The base-biased strategy is similar to the tip-biased ocne, except that
preference is given to those segments that are closest to the base of the
Flexible Arm Robot. The main disadvantage of this scheme is that any movement
involves the entire column.

The equal-biased strategy emphasizes equality for each segment, so that
the configuration of all segments is the same. It introduces a difference
between even and odd segments. All even segments are rotated 180 degrees in
respect to the odd segments, so the sign of their x and y rotations and
translations differ. An advantage of the equal-biased scheme is the equal
wear of all parts, but the main disadvantage is the reduced flexibility, fram
én to 6 degrees of freedom.

4.2. Direct Kinematics

Data driven motion is achieved by explicitly changing the variables
which define the configuration of the Flexible Arm Robot. Since the actuators
are its only variable parts, the first way to define a particular
configuration is by all the actuator lengths A, j (1<u<n, 1<i<6). A second
way the Amm's configuration is defined is by 4ll the DOF variables D, i
(1<u<n, 1<i<6). Each set of DOF variables is related to one and only one sét
of actuator lengths.

Manipulation of both the actuator lengths and the DOF variables are
desired. When the DOF variables are modified, the new actuator lengths must
be calculated. This process will be called ‘'Actuator extension
transformation' (section 4.2.2). When the actuator lengths are changed, the
new DOF variables must be calculated. This process will be called 'Inverse
actuator extension transformation' (section 4.2.3). The following sections
will illustrate how to derive these sets of variables from each other.
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4.2.1. List of Variables
The relation actuator length and DOF variables involve only actuators

and DOF variables of the same segment. Therefore, the equations will focus on
one individual segment, so that the index u can be amitted.

A - Length actuator i (1<i<eé).
D DOF variables vector.
(Dy, Dy, D3, D4, D5, Dg)T
M; Coordinates vertex i of maneuverable plate (1<i<6).

(Mj3 , Mjp , Mj3, 1)T
B Coordinates vertex i of base plate (1<i<6).

(BillBiZIBi3ll)T.

[T] | Transformation matrix T.
Tya T2 Ti3 Tyg
T21 T2 T23 Tog
T31 T32 T33 Tag

Tg1 T4 T4z Tyy

Ci Vector from B; to M; (1<i<e).

(Ci1 +» Ciz s Ci3, 0)T

(3] Jaccbian with partial derivatives Jpy = éFp/qu (1<p,q<s6) .
Jll le seoe J16

J21 J22 LY J26

J61 J62 so e J66

F Function vector for Newton-Raphson approximation.

(F, ,Fy ,Fy ,F4 , F5, Fg )T
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4.2.2. Actuator Extension Transformation.

A segment is driven by actuator extensions. When motion is desired in
each degree of freedam, a transformation to actuator extensions is necessary.
The cbjective of this section is to compute the actuator lengths A; (1<i<6)
given the DOF variables Dj (1<i<6).

The desired transformation is closely related to the coordinate
transformations needed for the graphical representation of the Flexible Arm

Robot as described in section 3.3.

(1) campute [T]

(2) FOR i=1 TO 6 DO

(3) M, = (17
(4) A, = | M, - B;
(5) ENDDO

Line (1) of algorithm 4.2.2 camputes the (4x4) transformation matrix [T)
(see 4.2.1.) using the DOF variables D. The constant coordinates B of the base
plate are assumed to be defined previously (see 3.1). Matrix [T] defines the
relation between M and B. Each individual element of [T] is listed below.

T11
T12
T13
T14
T1
T2
T23
Toq
T3
T32
T33
T34
T41
T42
Ta3
Taq

O\

cosDgcosDg
COSD4SiDD5
-sinD5

0
sinDysinDgcosDg
sinDssinDgsinDg
cosDgsinD,

0
cosDysinDgcosDg
cosD4sinDssinD6
cosDycosDg

0
Dy

- Biy(i+2)36

l

= cosDysinDg
+ cosDycosDg

+ sinD4si.nDG
sinDycosDg
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Line (3) camputes the coordinates of vertex i of the maneuverable plate.
Before the transformation, M's position is equal to B's. Since M is rotated
180 degrees relative to B, M's vertex i equals B's vertex p, where p is equal
to 1 + (i+2) mod 6 and (1<p,i<6) (see section 3.2). Below, the coordinates of
M; after transformation are shown in more detail.

M1 T11Boy ¥ To1Bpa * T31B3 ¥ Dy
M, ) T)2Bo *+ TogBp * TapBy + D,
My, Ty3Boy + TaaBy + TygBy + D
1 Y

Line (3) will campute the length of actuator i. This is equal to the
distance between vertex i of the maneuverable and vertex i of the base plate.

_ o2 o2 o2
A; = s@tl (Mj)-Byy)" + (Mj,7Bio)" + (Mi57B45) " ]

4.2.3. Inverse Transformation

A segment is driven by actuator extensions. When motion is desired by
directly changing the length of one or more actuators, an inverse
transformation to each degree of freedom is necessary. The cbjective of this
section is to campute the DOF variables Dj (1<i<6) given the actuator lengths
A; (1<i<s).

One might question whether it is possible to change the length of only
one actuator. The fact that a particular set of D-values can be altered in
such a way, that only one value of the corresponding set of actuator lengths
changes, implies that one or more A-values may be changed and that a
correspornding set of D-values exists.

The process of deriving the DOF variables directly from the actuator
lengths is rather complex. However, a small change in a segment's actuator
lengths, will result in new DOF variable values, close to the current ones.
This property can be used by Newton-Raphson approximation to compute these
new DOF variables [Dieudonne72].

The Newton-Raphson approximation [Hildebrand74] is an iteration method
and will be used to find the common roots of six functions Fj(D) (1<i<é).
Each function has six parameters, the DOF variables. F;(D) will be defined as
|B;M3| =~ Aj, which represents the distance between vertex i of the
maneuverable and base plate, minus the length of actuator i. If the D~
parameters are the correct set of values correspording to the given set of A-
values, the functions will be zero for each i (1<i<6). The following example
is used to derive the general approximation equation.
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Given the two functions f(x,y) and g(x,y), find the set (x%,y) for which
£(x,y) = g(x,y) = 0. The first step is to define £, as Of(x,y)/dx and fy as
of (x,y)/dy ard similarly g, and gy Newton-Raphson method:
(1~ %) £+ (VY ) fy = -£(x.,%)
(™) Iyt WY ) 9y = 905,y

fx fY xk+l- xk - _ £( xk ’ Yk )
% 9y | T | Vg ¥ g( %+ ¥y )
-1
k1™ *x - e &y ) A
yk+l- yk gX gy g( xk v yk )
;’ |
| %1 A t %y tx ¥y )
Yies1 Yy 9% % 9( %+ ¥ )

~ The general egquation to be used for the inverse actuator extension
transformation can be easily derived (see next algorithm 1line 7). The
following algorithm 4.2.3 will campute the DOF variables D given the actuator

lengths A.
(1) REPEAT

(2) campute [T] and M

(3) ci = Mi - Bi (1<i<s)
(4) o= e ? - A f? (1<i<6)
(5) Iq = O,/ @ (1<p, q<6)
(6) campute (3]

7) D = D - (@Y. FD)

(8) UNTIL F < epsilon.
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Algorithm 4.2.3. Before the first iteration at line (1), the values of B
ard A are assumed to be known. Vector D must be initialized, preferably with
values close to the real values which match the given set of actuator lengths
A. This way convergence is guaranteed and the amount of necessary iterations
minimized.

Line (2) will compute the transformation matrix [T] and the coordinates
of the maneuverable plate's vertices M according to algorithm 4.2.2.

Line (3) will campute vector C; for all i (1<i<6), which represents the
distance between vertex i of maneuverable and base plate. It embodies the
expected length of actuator i. This expected length is an approximation of
the real (known) length of actuator i, represented by a§. The value of Cj

on the current value of DOF variables D, which might not yet be the
set that matches the A-values. When more loop iterations have been executed,
the difference between C and A will become smaller and smaller.

Line (4) camutes the value of function F; for all i (1<ig6). It
represents the difference between the expected length of actuator i
(according to the current values of DOF variables D) and the real length of
actuator i. The advantage of using squared lengths is simplification of the
partial derivatives by avoiding complicated and expensive constructions like
square roots. When more loop iterations have been executed, the function
values will get closer ard closer to zero.

Line (5) will campute all 36 values of the 6x6 matrix Jacobian [J],
representing the partial derivatives of F by D. Each element Di is equal to
dF;/dDy (1<i,3<6) and is shown below.

dF,/ D,

2. Gy (all k, 1<k<3)

dF,/d, = 2.sm[C:_ . (T,B;. =T, B..) ]

1 4 1<q<6 1 3912 2913

aF./éD = 2, (C,,cosD_+C, sinD_ ) . sum ( T..B. )

b 5 11 6 12 6 1<p<3 p3 1p
-2.Ci3. (Bilc::::sD5 +st5. (Bizst4+Bi3cosD4))

dF,/ dD, = 2. (M B, -M B, )
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Line (6). Since the inverse matrix J1 is needed, IU-decamposition
[Press86] is used to invert J.

Line (7) where the current DOF values D are adjusted is the heart of the
algorithm. For each imdividual element D; the approximation can be written as
follows.

D, = D, - sm ( J;X.F ) (all i, 1<i<e)

Line (8) will determine whether the current values of the DOF variables
D are satisfactory. This is done by examining the absolute biggest function
value F; (1<ic6). If this value is smaller than a chosen positive mumber
Close to zero (epsilon), the DOF values D are accepted. If not, the loop will
start its next iteration at line (2).

Convergence is not always gquarantied. Some safety precautions must be
taken to recognize divergence and avoid a perpetual loop. This can be done by
canparing the current function values to their previcus ones. Although scame
fluctuations are allowed, the function values should get smaller during each
iteration. Divergence can be caused by initial DOF values which differ too
much from the correct corresponding set of D-values that the algorithm tries
to find. A secord cause for dJ.vergence is caused by linear dependency of the
elements of the Jacocbian. This is the result of an actuator and plate whose
angle is close to zero. A subprogram prevents this angle from exceeding a
minimm value.

4.3. Irdirect Kinematics.

Goal driven motion is achieved by specifying explicitly a desired
position and orientation for the control pod. The configuration of the
Flexible Arm Robot for the given location will be calculated and expressed in
both actuator lengths and DOF variables. Chapter 5 will show how the Arm will
be moved autamatically from the current to the desired location.

The cbjective of this section is to derive the DOF variables D fram a
given location P (P,,P,P3) of the control pod. These coordinates will be
relative to the bas:.s of the Arm, attached to the Habitat Module of the Space
Station. An equal-biased control strategy has been adopted. Because the
canfiguration of each segment is the same, the stacked segments of the
Flexible Arm Robot will form an arc, from the Habitat Module to the control
pod. The index u will be amitted since the values of the six-tuples A, (as
well as D;) are equal for each segment u (l<u<n).
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4.3.1. List of Variables
P Location of control pcd.

( P]_r Pz, P3 )

L Orthonormal projection of P on the XOY-plane.
(L11L21L3) = (P11P2r0)
M Center of circle through O and P.

(M, M, M3) = (M , M, 0)

U Iocation maneuverable plate of segment 1.
(U11U21U3) = (D]_IDZID3)

T Orthonormal projection of U on the XOY-plane.

(T11T21T3) = (UlIUZIo)

S Location maneuverable plate of segment 1 without x,y-rotations.

(51152153) = (SllSZIO)

Q ILocation maneuverable plate of segment 1 without y-rotation.
( Qll Q2l Q3 )

o Origin of coordinate axes (0,0,0), basis of FAR.
E Center of circle through O and Q.

k Ratio M/L.

r Radius of circle through O ard P.

R, Angle of last segment and the XOY-plane.

R, Angle of first segment and the XOY-plane.

R, Angle between line 0S ard line OQ

Ry Angle between line O0Q and line CU.
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4.3.2. Configuration Transformation

Figures k1 to k4 will illustrate the transformation from pod coordinates
P to DOF variables D. Finally, the actuator lengths A can be easily derived
from D (see section 4.2.2).

The configuration of the Flexible Arm Robot in figure k1l is represented
by the arc from origin O to P. Point P is the location of the control pod.
Origin O is the center of the base plate of segment cne, which is attached to
the Habitat Module. The arc is part of the circle through O and P with
midpoint M and radius r. It contains all centers of the Arm's plates and is
situated in the shaded rectangle. Point U represents the center of segment
ane's maneuverable plate. The angle between this plate and the XOY-plane is
represented by Ry. R, is total angle of the Arm, from the base to the control
pod. Point L is the orthonormal projection of P on the XOY-plane, ard T the
orthonormal projection of U. The shaded triangle OIU can also be found in
figure k3. A straight line through O and M cuts T and L (not necessarily in
that order). Obvicusly, midpoint M can be expressed in terms of L. Since L is
equal to (Py,P,,0), M can be expressed in L times a constant factor k
(kPq,kP,0). If R, is equal to 90 degrees, than L is egual to M, ard k = 1.
Thus, if k < 1 then R, < 90 degrees, if k > 1 then 90 < R, < 180 degrees.

First Kk can be expressed in P, since |(M| = |PM|

kP)2 + (kPp)2 = (P, - kP)? + (Py - kPy)? + PS
o = P2 - 2kP? + P2 - 2KP2 + P2

1 p2
kK = 114 )

AR FF

Now r can be expressed in P, since r = |oM]|.
r = k.sqrt(Pi+P§)
Next, sin( R, ) = |PL|/r, while |PL| = Py, so that
R, = arcsin( - )

Ro = Pw/n



) . Vi . . . . o B R e L . . . . s . .

Flexible Arm Robot July 26, 1988 page 18

The first DOF variable to be determined is DOF variable D3, the z-
translation of segment one. Since U is the center of the maneuverable plate

of segment ane, D3 is equal to |UT| which is equal to r . sinR,.

D3 = r.s:.nRo

Finally, the length of line OT will be determined. Clearly, |OT| is
equal to |aM| - |M|. But |[M] = r and || = r . cosR,, so that

lor| = r - r . cosR,

Figure k2 is an orthonormal view of figure kl. It shows the XOY-plane,
with the z-axis pointing upward from the paper toward the viewer's eye.
Figure k2 will assist determln_mg the x and y translations of segment one,
represented by DOF variables Dy equal to U; and equaltoU2
The relation Uy/|OT| = kPl/IOMI and U2/|101‘| ku|0M| is cbviocus. |M| 1is
equal to radius r.

u, / |or| = kp,/ |

u o= k.P . |or|/ |«
D, = k.P . (1-cosR))
D, = k.P,. (1=-cosR))

Fiqure k3 shows a sphere with center 0. Points U, Q and S are located on
the surface of the sphere. Furthermore, S is positioned on the z-axis, Q is
part of the YOZ-plane and |OU| = |oS| = |oQ] is the radius of the sphere.
Lines SU, SQ and QU are also part of the sphere. The triangle OTU can also be
foundmflgurekl.Ulsthecenterofmemaneuverableplateofsegmentone
Point Q would be this location if the y—rotatlon Dg was ignored. Point S would
be this location if both x and y rotation Dy and Dg were amitted. R, is the
anglebetweenOSandOU.RylstheanglebetweenOanﬂw.
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After point S has been rotated R, degrees around the x-axis, it.isgqu:_al
to point Q. After point Q has been rotated degrees arourd the y-axis, it is
equal to point U. This results in the follow relations.

T
0 1 0 0 0
0 . 0 cosR, sinRy | = | |OU| sinRy
|ou] 0 sinRy cosRy |ou| cosRy
T :
0 cosR, 0 -sinR, ~|0U| cosRy sinR,
|oU| sinR, . 0 1 0 = |0U| sinR,
JoU| cosR, sinR, 0 cosR, |oU| cosRy cosR,

This last vector is equal to U (Uq,U,,U;), so that both Ry, ansty can be
expressed in Uj, which is equal to D; (1<i<3).

Ry = arcsin( Uy / |oU| )
Ry = arcsin( -U; / |OU|cosRy )

Figure k4 shows the relation between R, and Dy. The YOZ-plane is shown
containing a circle through O and Q with center E and radius |OE| = |0Q|. The
shaded isosceles triangle OEQ can also be found in figure k3. Angle R, is
known, but angle Dy is required for this is the actual x-rotation of segment
cne. The figure shows that D; equals 2R,. Similarly, the y-rotation Dg is
equal to 2R,. The z-rotation Dg may keep its initial value.
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5. MOVEMENT

The direct and indirect kinematics in the previous chapter are used to
create control algorithms for a moving Flexible Arm Robot. These algorithms
can be applied to both the camputer-simulated and the real Flexible Rabot.
Two different methods will be examined; data driven and goal driven motion.

5.1. Data Driven Motion

Data driven motion is a technique in which the Flexible Robot is moved
by directly manipulating the parameters which define its configuration. The
configuration parameters to be manipulated are the DOF variables and actuator
lengths. This type of movement can also be referred to as 'manual controlled'
motion. The camputer system that regulates the motion of the Arm will receive
signals fram input devices, such as keyboard, joy stick, mouse, dial box, etc.
These signals are translated into modifications of one or more configuration
parameters. The computer simulation visualizes motion by changing these
parameters during the consecutive drawings of the Flexible Arm Robot on the
camputer screen. The speed at which the object moves is determined by the
(possibly negative) value, which is added to the current value of the
parameter. A higher increment will make the cbject move faster.

(1) 1oOP

(2) ClearScreen

(3) Draw_Flexible Arm Robot( D ) (algorithm 3.3)

(4) IF Change DOFvariable THEN

(5) FR i=1 TO 6 DO

(6) IF change( i) THEN D; = D; + delta() ENDIF
(7) ENDDO

(8) A = DOF_to Actuator( D) (algorithm 4.2.2)

(9) EISEIF Change Actuatorlength THEN

(10) FR i=1 TO 6 DO

(11) IF change( i) THEN A; = A; + delta() ENDIF
(12) ENDDO '

(13) D = Actuator to DOF( A ) (algorithm 4.2.3)

(14) ENDIF

(15) ENDLOOP
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Algorithm 5.1 uses the direct kinematics of sections 4.2. The statement
sequence from line (1) to (15) is a perpetual loop. Each time after the
camputer screen has been cleared (line 2), the Flexible Arm Robot is drawn
(line 3), using the current values of the DOF variables D.

After line (3), either the DOF variables D or the actuator lengths A can
be changed. If the boolean value Change DOFvariables is true, the statement
sequence line (5) to (8) will be executed. If not, and the boolean value
Change Actuatoriength is true, the sequence 1line (10) to (13) will be
executed.

The locp from line (5) to (7) will give each DOF variable Dj (1<i<6) a
chance to be changed.

Line (6) will add the result of function delta(), the parameter-
increment, to DOF variable D; if the boolean function change( i ) returns the
value 'true'. In this sunulatlon, change( i ) is triggered by one of the three
buttons of a 'mouse' input-device, in cambination with a 'r' (for rotation) or
't! (for translation) keystroke on the keyboard. Function delta() is used to
control the speed of the movement. Its value is set by the xy-value of the
same mouse device.

Line (8) will compute the new actuator lengths A, which corresponds to
the charged D value(s), using algorithm 4.2.2.

Line (9) to (13) will change the actuator lengths as line (4) to (8)
changed the DOF variables. Consequently, line (13) will compute the DOF
variables D, correspording to the new actuator lengths A, using algorithm
4.2.3.

5.2. Goal Driven Motion

Goal driven motion is a technique in which the Flexible Arm Robot is
moved autamatically fram its current location to a specified location. The
configuration of the Am in this position is calculated using the inverse
kinematics of section 4.3, and expressed in terms of DOF variables and
actuator lengths. A so called nonlinear maneuvering algorithm has been
developed to move the Flexible Rcbot from its current to its desired
configuration. The algorithm will give the DOF variables or actuator lengths
their desired values after a fixed muber of steps. Each step, the DOF
variables or actuator lengths will be altered and close in on their goal
values. The total amount of steps required, depends on the difference between
each actuator's or DOF variable's current and goal value. The biggest dif-
ference determines the required mumber of steps, for this parameter will
experience the highest increment per step. If the increment is too great, the
motion of the object will not be smooth. Each DOF variable (translatlon, rota-
tion) and actuator length has an empirically determined maximum allowable
increment value.
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5.2.1. Nanlinear Maneuvering based on DOF Variables

After the desired location of the control pod is given, the cor-
respording goal-DOF-variables G; (1<i<6) are camputed. When the mumber of
steps s mwh.xchtheAmw:.llbemcvedto its goal location is defined, the
increment per DOF variable Dy persteplsconmted Thlsconstantvaluecl
will be added to each DOF var:.able D; (1gi<6) during each step, while the
Flexible Arm Robot is drawn on the camputer screen. The last step will give
each DOF variable its desired value.

(1) FR i=1 TO 6 DO
(3) ENDDO

(4) s = MaxPunc(C , C, , Cy, C , G5y G )

(5) FOR i=1 T0 6 DO

(6) Ci = Ci / s

(7) ENDDO

(8) WHIIE s>0 DO

(9) s = s-1

(10) FOR i=1 T 6 DO

(11) Di= G, - s * C

(12) ENDDO

(13) A = DOF_to Actuator( D ) (algorithm 4.2.2)
(14) Draw_Flexible Arm Robot( D ) (algorithm 4.3.2)
(15) ENDDO

Algorithm 5.2.1. Line (2) assigns to C the difference between goal value
G and current value D. This value may be negative.

Line (4) determines s, the required mumber of steps. Its (integer) value
depends on the absolute maximm value of Cj (1<i<6). The function MaxFunc will
take into consideration that the fu'stthreeparametervaluestobecompared
to the others represent translations, and the last three values rotations.

Line (6) gives each Ci (1<i<6) its intended value, the increment per DOF
variable Dj per step, by dividing each Cj by s.



Flexible Arm Robot July 26, 1988 page 23

The while-loop from line (8) to (15) will handle the actual movement.
For large values of s, the computer's internal precision may cause the final
DOF values not to be exactly equivalent to the desired values G. In order to
end the while-loop with the correct DOF values, the iteration strategy is
inverted. Instead of adding a value during each iteration, a value will be
subtracted.

Variable s is the mumber of remaining steps. Line (9) will subtract one
during each iteration. Line (11) camputes the new current value of the DOF
variables D. This is done by subtracting s times the difference per step from
the goal value G. Before the first iteration, the assigrment is D =G - ( G-
D ) which is equal to D. Thus, the loop will start with the correct value of
D. The last iteration, s is equal to zero. The assigrment is now D=G - 0, so
that D will get the exact desired value G. Finally, line (13) derives the
actuator lengths A from the DOF variables D.

5.2.2. Nonlinear Maneuvering based on Actuator Lengths

Although the concept of a nonlinear maneuvering algorithm based on the
actuator lengths is not much different from that based on DOF variables, the
behavior of the moving Flexible Arm' Robot is significantly better (see
section 5.2.3). Its major disadvantage is the relatively high-cost conversion
of actuator lengths to DOF variables (see line 13 below).

(1) FR i=1 TO 6 DO

(2) C; = G; - A

.(3_) ENDDO -

(4) s=MaxFUnc(C,C2,C,C4,CS,c6)

(5) FOR i=1 TO 6 DO

(6) ci = Ci/s

(7) ENDDO

(8) WHIIE s>0 DO

(9) s = s~-1

(10) FOR i=1 TO 6 DO

(11) A, = G - s *.ci

(12) ENDDO

(13) D = Actuator to DOF( A ) (algorithm 4.2.3)
(14) Draw_Flexible Arm Robot( D ) (algoritim 4.3.2)
(15) ENDDO
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Algontlm 5.2.2. This time, after the desired location of the control
ped is given, the corresponding goal-Actuator-lengths G; (1<i<6) are camputed
using the indirect kinematics of section 4. 3ar'dalgor1ﬂm4 2.2. The constant
value Cj 1srnwthed1fferencebetweenthemrrentlengﬂ1andgoallengthof
acb.:ator i (1<i<6), amd will be added during each locp iteration, while the
Flexible Arm Robot is drawn on the camputer screen. The last step will give
each actuator its desired length.

Only lines different from algorithm 5.2.1. will be discussed. At line
(4), function MaxFunc can determine the nmumber of steps s more easily since
all constant values Cj (1<ik6) are of the same type. Line (11) will now
campute the new current actuator lengths A. Line (13) computes the cor-
responding DOF variables D, using algorithm 4.2.3.

5.2.3. Characteristics of Nonlinear Maneuvering Algorithm.

The advantage of the algorithm based on actuator lengths imvolves the
behavior of the actuators during movement. One example would be if the
Flexible Arm Robot has to be moved from a -10 degree to a 20 degree x-
rotation. This can be done in 10 steps, by adding 3 degrees to the current x-
rotation during each step. The Arm will move to its desired configuration in a
smooth way. However, examination of the actuator lengths during each step
shows, that same of them increase their lengths after initially getting
shorter. This results in a seriocus waste of energy for a fifty segment
Flexible Arm Robot, which has three hundred actuators. Furthermore, if a
segment is in an extreme position, motion may be impossible if based on
nonlinear maneuvering based on the DOF variables, as illustrated in figure m2.
If nonlinear mneuvermg is based on the actuator lengths, the Flexible Arm
Robot will experience no problems mcvmg from the -10 degree to the 20 degree
x-rotation and problems with segments in extreme positions no longer exist.
Each actuator whose length has to be changed, will extend or retract, step by
step, to its desired length. In contrast to nonlinear DOF maneuvering, ac-
tuators whose initial and goal length are the same, will not change during
movement.

The segment in figure ml is in balanced position The lengths of
actuators Al, A2 and A3 are the same, and equal to (minlength + maxlength)/2.
Joint J1 connects actuators Al and A2 to the maneuverable plate, and joint J2
comnects actuator A3 to the maneuverable plate. Parts of four circles with
their intersections E, F, G and H are shown. These arcs represent the extreme
values of the three actuators. The arc through E and H is the minimm length
of actuators A2 and A3. The arc through G and F represents the maximum values
of actuators A2 and A3. The arc through E and F is the minimm, the arc
through G and F the maximm length of actuator Al. Thus, joint J1 must be
inside the area enclosed by E, F, G and H. If this joint is located in one of
these points, and actuator A3 is either minimal or maximal, the segment is in
an extreme position.
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In figure m2, the same segment as in figure ml in a different position.
The segment is in an extreme position. Joint J1 is located in point F and
actuator A3 is maximal. The dotted lines illustrate the same segment, with
joint J1 moved from point F to point E. Again the segment is in an extreme
position, for the lengths of actuators Al and A2 are now minimal. One arrow
shows the trajectory of the center of the maneuverable plate, when the
nonlinear maneuvering is based on the DOF variables. The other arrow shows
the path of joint J1. Clearly, actuator Al gets initially shorter, and during
motion becames longer. Because its length would exceed its minimum value, the
suggested motion is not possible. The figure shows a situation where the
nonlinear maneuvering algorithm based on DOF variables fails.

Figure m3 assumes the same situation as figure m2 with the exception the
use of nonlinear maneuvering based on actuator lengths. The figure shows the
behavior of the maneuverable plate, while the segment is moved from one
extreme position in the other. This is done by changing the length of actuator
A2, step by step, from its maximum to its minimm value. During this motion,
the length of actuators Al and A3 will not change. Joint J1 will follow the
arc from point F to E. Since the length of the (maneuverable) plate is fixed,
joint J2 can only move back and forth. The shaded little circles show the
trajectory of the center of the maneuverable plate. This figure shows the
superiority of the nonlinear maneuvering algorithm based on actuator lengths.

5.2.4. Motion Constraints.

Motion in each degree of freedom can never exceed physical limitations
on position. A segment is considered in its balanced position if all the
actuators are half extended, that is half way their fully extended and
retracted lengths. For each degree of freedom there exists a set of values of
the other five degrees of freedam which will allow the maximum motion in that
degree of freedam (see table tl1). This is called the neutral position of the
degree of freedam, which may be different from the balanced position of the
segment. Only in neutral position, a degree of freedam can reach its absolute
maximm plus or minus value. Because the actuators may be extended only 81.021
cm (31.898 in.), a displacement in one. degree of freedam changes the maximm
positions that may be obtained individually in each of the cother five degrees
of freedam (see figure t2). The closer one degree of freedom approaches its
absolute plus or minus maximum value, the more the maximum positions in the
other five degrees of freedom are limited. ([Parrish73] presents a method to
predict these position limits, based on the current orientation, of a six-
degree—of-freedom flight similator platform. The results of tables tl and t2
have been determined empirically.
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6. OONCIUSIONS

The powerful concept of a Flexible Arm Robot allows an astronaut to
reach any location around the space station without extra vehicular
activities. This eliminates the necessity of wearing a space suit. FAR's many
degrees of freedom, and consequently great flexibility, required development
of more camplex control algorithms. The kinematic solutions, motion control
algorithms, and its implementation in a graphical computer simulation are
presented in this work. The direct kinematic algorithms offer a method for
driving the Flexible Arm Robot's position and orientation from the lengths of
its actuators, and visa versa. The indirect kinematic algorithms offer a
method to derive a configuration for the Flexible Arm Rcbot for a given
location of the control pod. A nonlinear goal-driven maneuvering algorithm,
which uses these kinematic equations to move the Flexible Arm Robot, has been
developed. The validity of the algorithms has been proven by its
implementation in the camputer simulation.

The simulation makes it possible to examine the dynamic properties of
the Flexible Arm Rcbot. The simulation has shown that e.g. an equal-biased
strategy restricts the flexibility of FAR. It appears that this strategy does
not allow a smocth motion of a fully extended configuration. Study of the
dynamic characteristics of the Flexible Arm Robot will be an issue for
further research.
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Illustration 3

Illustration 4
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Index to Illustrations

Illustration 1.

This picture shows the graphical representation of a segment. The yellow
hexahedrons represent the base and maneuverable plates. The red lines
represent the actuators. The white dots are the joints. The green square
symbolizes the Habitat Module of the Space Station. The angle between base and
maneuverable plate is approximately 44 degrees.

Two segments. The base plate of segment one shows the Xyz-axes ard
vertex mumbers. The configuration of both segments is the same (equal-biased
strateqgy) .

Illustration 3.

The green circle represents the control pod and shows the local location
and orientation of the xyz-axes.

Illustration 4.

This is a six-segment Flexible Arm Robot. Each segment has a y—- rotation
of approximately 10 degrees, and a translation in the x direction of 17.0 cm
(6.7 inch).

I1lustration 5.

Space Station with a fifty segment Flexible Arm Robot. The control pod
is located at the left solar panel. The angle between the maneuverable and
base plate of each segment not more than 1.1 degree.

Illustration 6.

This is a top-view of the Space Station. Again, the Flexible Arm Rcbot
cansists of fifty segments. With a y-rotation of only 4.4 degrees, the
cantrol pod is able to reach the other side of the Space Station.
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DOF-variable Maximum Whole set Dj_g
Dy om (in.) 26.7 ( 10.5) ( 26.7, 0, 52.6, 0, 0, 0)
-26.7 (-10.5) (-26.7, 0, 34.0, 0, 0, 0)
D, cm (in.) 23.1 ( 9.1) (0, 23.1, 46.7, 0, 0, 0)
-23.1 (-9.1) ( 0,-23.1, 46.7, 0, 0, O )
D3 o (in.) 71.4 ( 28.1) (0, 0, 72.4, 0, 0, 0 )
16.5 ( 6.5) (0,0, 6.5 0,0, 0)
Dy deg. 33.9 ( 0, 11.9, 41.9, 33.9, 0, 2.1)
=-33.9 ( 0,-11.9, 41.9,-33.9, 0,-2.1)
D5 deg. 49.6 ( 11.9, 0, 32.3, 0, 49.6, 0 )
-49.5 (-17.0, 0, 30.5, 0,-49.5, 0)
D6 d@o 23.9 ( 0, 0, 49.8, 0, 0, 23.9 )
-23.9 (0, 0, 49.8, 0, 0,-23.9 )
Table t1 = Absolute plus/minus maxima of DOF variables.
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Static Position Limits
Position
Dy b Dy Dy Dg Dg
cm (in.) cn (in.) cm (in.) deg. deg. deg.
19.1 (7.5) | #13.2 (5.2) 532 Eig:;; 49.0 _;i:g +5.8
12.7 (5.0) | #23.1 (9.1) 517 Eig:g; s9.0 22 am.2
6.4 (2.5) | #22.9 (9.0) 533 gig:i; 0.5 200 #17.4
0.0 (0.0) | #23.1 (9.1) .1 §§Sé§’ 3.9 23 i3
-6.4 (2.5) | 122.9 (9.0) S2'° §§7§?) 2.2 29 ssa
~12.7 (5.0) | #22.9 (9.0)  oa°3 Eii:ig #18.7 3% 1123
-19.1 (7.5) | #13.2 (5.2) 52 gig';; +9.4 Bl 6.7
Table t2 - Plus and Minus maximm values of the other five DOF

variables for a fixed value of the x~-translation D;.
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figure p2 - Flexible Arm Robot
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figure p3 - Two Segments

PJ-880610-013



figure p4 - One Segment

PJ-880610-012



-‘

———————1 width = 6.2548 cm (2.4625 in.)

[ height = 7.620 cm (3.000 in.)

{ length = 92.464 cm (36.403 in.)

Actuator (extended)

10}

\_/

e(
: | length = 81.021 cm (31.898 in.)

Actuator (retracted)

e o

length = 50.541 cm (19.898 in.)

figure p5 - Parts of a segment

PJ-880610-011
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figure g1 - Triangular shaped Hexagon

2b

PJ-880610-014



. . . M L) : . K N N . S A <
-’ -’ -; — - : -’ - - ' - - - - -i -: -.; - -

Maneuverable Plate

Base Plate

figure g2 - DOF-variables D, segment u
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Maneuverable Plate
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figure g3 - Coordinates Vertices Base Plate
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Maneuverable Plate

Base Plate

figure g4 - Coordinates Maneuverable Plate Segment u
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figure g5 - Actuator lengths A, segmentu
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figure k1
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figure k3
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figure k4
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figure m1 - Segment in balanced position
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figure m2 - Maneuvering based on DOF variables
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figure m3 - Maneuvering based on actuator lengths
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